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Introduction 
Aquatic fish and invertebrate populations are routinely surveyed by scientists using a variety of 
sampling techniques such as trawls, dredges, gillnets, and traps.  With all of these sampling methods, 
the primary goal of a survey is to obtain representative data that allows estimation of key population 
quantities that can be used to support management.  When available, survey data are often considered 
vital components of analytical investigations into the biology, ecology, and population status of natural 
aquatic populations. 
 
Survey data are often analyzed to derive estimates of relative abundance indices, and temporal 
patterns in these indices are assumed to proportionally reflect changes in the true underlying total 
abundance or density of target populations.  The link between abundance indices and true population 
size is given by the proportionality constant, q, which is referred to as the catchability coefficient in the 
equation C = qEN, where C is survey catch, E is survey effort, and N is total population abundance.  In 
many sampling situations, the parameter q can be viewed as the product of target species’ availability, 
defined as the proportion of the population present within the survey area (or subarea), and gear 
efficiency, which is the proportion of the animals encountered by the sampling gear that are 
successfully captured (Kimura and Somerton 2006).  Therefore, q = qaqe, where the subscripts a and e 
denote availability and efficiency respectively (Kotwicki et al. 2014).  Availability is related to the 
underlying population dynamics of target species while gear efficiency can be affected by 
environmental conditions, physical morphology of the survey locations, changes in survey vessel, or 
modifications to sampling gear and/or deployment protocols.  Despite the possible influence of these 
variables on the components of q, time-series of relative abundance indices are often derived from 
estimation techniques assuming constant catchability.  
 
Estimation of relative abundance indices, which are typically expressed as the mean catch-per-unit-
effort (CPUE) of a survey over a defined spatiotemporal period (e.g., yearly across full sampling area), 
generally relies on one of two statistical methods; use of either design-based estimators or model-
based procedures.  For design-based methods, the mean CPUE value is estimated using an analytical 
equation consistent with the underlying statistical design of the survey such as random stratified 
sampling.  If samples are taken in accordance with the assumptions of the statistical design, particularly 
with respect to independence of samples (uncorrelated CPUE observations vs. temporally/spatially 
correlated CPUEs), then design-based estimators will yield an unbiased estimate of the mean CPUE.  
Model-based methods such as generalized linear models (GLMs, McCullagh and Nelder 1989, Maunder 
and Punt 2003) are often used in situations where a formally defined sampling design has not been 
used to collect samples, and/or if there is interest in evaluating the statistical significance of 
hypothesized covariates on CPUE.  An unbiased estimate of the mean CPUE can again be derived 
provided the properties of the survey data are consistent with model assumptions, particularly those 
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pertaining to the underlying distribution of CPUE measures, variance structure (heteroscedascity, 
overdispersion), model specification (linearity, vs. nonlinearity), and again, independence of CPUE 
observations.   
 
San Francisco Bay is the largest estuary on the west coast of the United States.  Freshwater is supplied 
to the bay primarily from the Sacramento and San Joaquin rivers, which converge to form a complex 
mosaic of tidal freshwater areas known collectively as the Sacramento-San Joaquin Delta (referred 
herein as the Delta).  Over the past century, the Delta has experienced considerable anthropogenic 
changes in the form of lost wetlands (Atwater et al. 1979), sediment loading (Schoellhamer 2011), 
invasive species (Cohen and Carlton 1998), and input of contaminants (Connor et al. 2007).  Analyses of 
survey data by the California Department of Fish and Wildlife (CDFW) have shown long-term declining 
patterns in abundance indices for several fish species, particularly since the early 2000s (Sommer et al. 
2007).  These patterns along with complementary analyses of other Delta fish and ecosystem attributes 
have collectively supported the conclusion that overall abundance of several pelagic fishes is currently 
quite low.  Specific to the available survey data, however, temporal patterns in CPUE only represent 
changes in overall population abundance when gear catchability has remained constant over time and 
throughout the survey area.  If survey catchability has systematically changed temporally or spatially, 
perhaps in response to specific changes in ecosystem attributes or biological requirements of target fish 
populations, then trends in CPUE indices trends may no longer adequately reflect true changes in total 
fish population abundance.   
 
In addition to the assumption of constant catchability over time and space, analyses of survey data 
using either design- and model-based procedures often assume statistical independence among survey 
collections.  Failure to meet this assumption implies that survey CPUE measures are temporally and/or 
spatially autocorrelated.  Since the distribution of many aquatic species can follow temporal and/or 
spatial gradients or clusters (schools), it is possible for autocorrelated field observations of CPUE to 
manifest within survey datasets.  Despite the intuitive likelihood that routinely operated fish 
monitoring programs sample clusters of individuals, contemporary analyses of survey data are often 
based on methods that do not formally account for autocorrelated samples.   
 
Meeting the assumptions of methods used to analyze survey data is critical to developing confidence in 
derived population quantities.  Also valuable is knowing if particular assumptions have been violated, 
since such information is key to understanding sources of scientific uncertainty.  At present, it does not 
appear that the assumptions of constant catchability and independence among CPUE samples have 
been comprehensively evaluated for fish surveys in the Delta.  Therefore, this proposal is designed to 
formally assessing these assumptions for two important surveys targeting delta smelt (Hypomesus 
transpacificus).    
 
Relevance/Rationale 
When the catchability of survey gear used to sample fish populations changes systematically in 
response to biological, environmental, physical, or sampling covariates, CPUE measures may not 
maintain a consistent proportional relationship with overall abundance.  Additionally, CPUE samples 
taken ‘close’ in time or space have the potential to be correlated, which implies CPUE observations are 
not statistically independent and overall survey sample sizes are effectively lower than the actual 
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number of collections completed in a given time period.  Quantifying the effects of factors 
hypothesized to influence survey catchability and investigating the presence and potential impacts of 
autocorrelation among samples will aid in developing more comprehensive and robust interpretations 
of existing delta smelt survey data. 
 
Additionally, the results of this project can directly inform ongoing mechanistic modeling efforts such as 
those focused on developing a delta smelt life cycle model and evaluating population level 
consequences of entrainment.  Developing a more informed understanding of spatiotemporal patterns 
in delta smelt relative abundance, relationships with ecosystem attributes, and potential biases 
inherent to survey data can aid in the refinement of more complex modeling activities that utilize 
survey data for calibration and of validation.  The results of this project can also be used to potentially 
refine future field investigations of delta smelt.  In particular, if temporal/spatial autocorrelation is 
notable within the Delta fish survey programs, then effective sample sizes are less than perceived 
sample sizes and oversampling may be occurring.  Thus, efforts could be directed at modifying future 
survey activities to gain efficiencies and potentially redistribute valuable resources toward hypothesis 
driven studies that are otherwise not possible given the current budget climate.    
 
Applications of findings to management 
Survey data for delta smelt are a key information source for inferring population status and supporting 
advanced population level modeling activities.  Accordingly, estimated quantities from survey datasets 
are important foundational components of the science underpinning management.  In general, 
development of robust management strategies should simultaneously balance the varied perspectives 
of stakeholders and the scientific uncertainty in basal data and subsequent analyses of those data.  This 
project is therefore designed aid management efforts by evaluating potential sources of scientific 
uncertainty through quantitative evaluation of two important analytical assumptions inherent to 
analyses of delta smelt survey data.  If catchability is deemed to not significantly vary across a myriad of 
covariates, then confidence that surveys maintain a constant proportional relationship among CPUE 
and overall abundance of delta smelt can grow.  Similarly, if temporal and/or spatial autocorrelation of 
CPUE measures is negligible, then effective survey sample sizes will be on par with those currently part 
of Delta fish survey programs, and confidence that sampling intensity is adequate can be maintained.  
However, if either or both of these analytical assumptions are appreciably violated, then such 
information will aid efforts to understand sources of scientific uncertainty which can, in turn, be directly 
incorporated into the management process.    
 
Key Questions 
The Interagency Ecological Program (IEP) is a consortium of three state, six federal, and one non-
governmental organization designed to provide ecological information in support of science-based 
management of San Francisco Bay and the Delta.  The CDFW, which is one of the state organizations 
within the IEP consortium, oversees several longstanding survey data collection programs in support of 
IEP and related scientific activities.  Germane to the present proposal are the Fall Midwater Trawl 
Survey (FMWT1) and the Spring Kodiak Trawl Survey (SKT2), which provide stage-specific abundance 

                                                 
1 See https://www.dfg.ca.gov/delta/projects.asp?ProjectID=FMWT for more information on the FMWT survey. 
2
 See https://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT for more information on the SKT survey. 

https://www.dfg.ca.gov/delta/projects.asp?ProjectID=FMWT
https://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT
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indices that are used to infer population status of pelagic fishes in the Delta.  Accordingly, the following 
research questions are posed: 
 
1) Catchability. 

a) Are there specific covariates that significantly affect catchability of delta smelt by the FMWT and 
SKT survey programs?   

b) How do predicted CPUE and probabilities of false zeros3 vary over the domains of covariates 
deemed to significantly affect catchability?   
 

2) Independence of survey samples. 
a) Is there evidence of temporal/spatial autocorrelation among survey samples of delta smelt 
collected by the FMWT and SKT survey programs? 

b) If notable temporal/spatial autocorrelation is detected, can delta smelt abundance indices be re-
estimated by taking into account the inherent correlation structure of the FMWT and SKT survey 
samples?  

 
Methods/Investigative Approach 
A variety of statistical models will be fitted to the raw FMWT and SKT delta smelt survey data to 
address the objectives of this proposal.  For the FMWT survey, Latour (in press) recently demonstrated 
that delta smelt CPUE data (count-per-tow) were zero-inflated (Fig. 1) and effectively modeled with a 
zero-inflated negative binomial generalized linear model (GLM; Zuur et al. 2012).  Therefore, this 
modeling framework will serve as the starting point for analyses of the FMWT survey data. The PI is less 
familiar with the SKT delta smelt survey data, although these data also appear to be zero-inflated (Fig. 
1).  Accordingly, standard and zero-inflated GLMs will serve as a starting point for the SKT analysis, 
however, if diagnostics of preliminary model fits do not support these model types, then various 
generalized additive model (GAM; Wood 2006) formulations will be considered.  Once final model 
structures are identified for both data sets, a suite of covariates hypothesized to influence catchability 
will be examined.  Diagnostics associated with fits of those models and other parameterizations will 
then be evaluated for the presence of temporal/spatial correlation among survey samples.  Statistical 
analyses for question (1) will be conducted using the software package R (R Core Development Team 
2014) and analyses addressing question (2) will be implemented using the ‘rjags’ package within R 
and/or R interfaced with WinBUGS (Lunn et al. 2000).    
 
Catchability: The covariates of the FMWT and SKT sampling programs that will be investigated for 
effects on catchability include, but are not limited to: sampling time of day (ToD), Secchi depth, Tidal 
cycle, and Depth of sampling locations.  As mentioned previously, FMWT delta smelt CPUE data were 
effectively modeled with a zero-inflated negative binomial GLM (Latour in press), which can be 
described generally as: 
 

                                                                                                                                                             
3
 Probabilities of false zeros arise from zero-inflated data, which has been shown to be characteristic of the FMWT 

survey data (Latour in press) and is likely an issue with the SKT survey data (more on this below). 
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Fig.1. Proportion of tows where at least one 
delta smelt was captured, Spring Kodiak Trawl 
(2002-2013) and Fall Midwater Trawl (1967-
2013).  Reference line corresponds to 0.5. 
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where y is the value of the response variable and and are the means of the binomial and negative 
binomial distributions, respectively. Here the binomial 
distribution is used to model probability of a false zero, 
which is the result of excess zeros in the data, and the 
negative binomial model is used to describe the probability 
of observing a specific CPUE value of y (defined as count-
per-tow), including true zeros.  A GLM is achieved when 
the means of the distributions are modeled as linear 
combinations of specific covariates: 
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where the Xi’ s are the values of the m covariates, the f 
and g terms are the link functions which relate each linear 
combination to the distribution mean (logit for the 

binomial, log for the negative binomial), and the i’sand 

i’s are the estimated parameters that quantify the effects 
of those covariates on the response variable.   
      
For a generic covariate Z that is hypothesized to influence catchability (specifically qe), equation (2) 
could take the form: 
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where the Xi’s are covariates that statistically control for ‘other’ covariates (e.g., spatiotemporal) 
affecting the probability of a false zero and qe that, in turn, allow the effects of covariate Z to be more 
directly isolated.  If Z is a dichotomous categorical covariate, such as ToD (Z =0 for morning tows, Z=1 

for afternoon tows; Casey and Myers 1998, Benoit and Swain 2003), then the quantity me
  is the odds 
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ratio of obtaining a false zero observation in the afternoon compared to the morning.  For the count 

model component, me
 represents an estimate of afternoon sampling power relative to morning 

sampling power, or more specifically, the relative change in qe.  These interpretations can easily be 
extended to accommodate polychotomous categorical covariates such as Tidal cycle (flood, ebb, slack).  

If Z is a continuous covariate such as Secchi depth or Temperature, then mc
e

 and mc
e

 represent the 
change in the odds ratio and qe, respectively, for a change of c units in Z.   
 
For each survey dataset, several combinations of covariates will be considered and model diagnostics 
along with selection criteria (e.g., AIC, BIC) will be used to discriminate among competing 
parameterizations.  Model selection statistics will provide insight about the relative impacts of 
hypothesized covariates on probabilities of false zeros and qe.  From the model(s) receiving strong 
empirical support, effects of covariates on odds ratios and qe will be derived and used to broadly 
address question 1a.   
 
To address question 1b, predictions from strongly supported model(s) across the domains of all 
covariates included will be generated to express the relative effects (for categorical covariates) and 
functional relationships (continuous covariates) of covariates on probabilities of false zeros and CPUE.  
The intent of these model predictions is to provide detailed insight into how false zero probabilities and 
CPUE vary temporally (e.g., Year, Month, ToD), spatially (e.g., Area, Latitude, Longitude), and in 
response to physical (e.g., Tidal cycle) and environmental conditions (e.g., Temperature, Salinity, Secchi 

depth) within the Delta.  For CPUE, model derived predictions can be used to complement previous and 
ongoing investigations regarding spatiotemporal patterns of delta smelt and relationships of relative 
abundance with Delta ecosystem characteristics.  Since application of zero-inflated models to delta 
smelt survey data is relatively new, the intent of these predictions is to complement those provided by 
Latour (in press) and to more comprehensively understand false negatives.  In general, classifying false 
zeros is important but difficult to accomplish.  False zeros are observations recorded in a dataset that 
are not really or should not be zeros.  These can manifest as a result of misidentification of target 
organisms, poor experimental protocols (e.g., sampling time at locations is too short, suboptimal gear 
types or configurations), or because of ‘animal errors’ (e.g., behavioral aspects of organisms present at 
sampling locations prevent their collection; Zuur et al. 2012).  For delta smelt, species misidentification 
is not likely an issue and the FMWT and SKT surveys utilize experimental protocols general similar to 
trawl surveys that target small fishes operating outside of the Delta.  False zero probabilities could be 
tied to delta smelt behavioral when interacting with sampling gear, and patterns in these quantities 
across the domains of covariates could prove useful in understanding sampling dynamics. 
     
Although the methods outlined above have the potential to yield information about factors affecting 
probabilities of false zeros and qe, as configured they require temporal and spatial independence 
among survey samples.  If either type of correlation is present within the survey data, then the 
modeling approach will need to be modified, and methods to do so are described below.  
 
Temporal, Spatial Correlation:  As mentioned previously, application of design-based estimators or 
model-based procedures for deriving abundance indices from survey data requires temporal and spatial 
independence.  If survey samples close in time/space are more similar to one another than those more 



7 

 

separated in time/space, then effective samples sizes are lower than realized, sample data may not be 
representative, and estimated indices of abundance can be biased (Dormann et al. 2007, Zuur et al. 
2009, Zuur et al. 2012).  To assess the degree of temporal and spatial correlation within delta smelt 
FMWT and SKT survey data (question 2a), various model parameterizations will be fitted under the 
assumption of independence among samples (as described above).  From those models, detailed 
analyses of the residuals will be conducted.  Pearson residuals will be plotted over time/space and 
LOESS smoothers will be fitted.  A notably curved, systematically increasing, or systematically 
decreasing LOESS smoother would suggest an appreciable degree of temporal/spatial correlation.  
Sample variograms, which characterize the variance of the difference among residuals between 
sampling dates/locations across all sampling dates/locations can also be used to detect the presence of 
correlation.  Both the classic method of moments and the robust Cressie estimation approaches will be 
used to derive variograms, and if either type exhibits notable patterns across time/distance, then 
temporal/spatial correlation is likely present within the survey data.  If temporal/spatial correlation is 
detected, then models will be extended to formally incorporate temporally/spatially correlated 
residuals.  This amounts to fitting models of the form:   
 
                              CPUE = f (covariates) + temporally/spatially correlated residuals                                  (4) 
    
where the covariates represent the large-scale patterns in the CPUE data and the residuals capture the 
small-scale temporally/spatially correlated patterns.  Although various approaches can be used to 
model data with non-independent residuals, conditional auto-regressive correlation (CAR) represents a 
commonly used method (Zuur et al. 2012).  Therefore, CAR models will be developed in a Bayesian 
framework, fitted to delta smelt CPUE data, and used to generate the aforementioned estimated 
quantities and model predictions (question 2b).   
 
Application of CAR models to large datasets such as the FMWT and SKT surveys can be computationally 
intensive.  Because of the Bayesian estimation framework and implementation of Markov Chain Monte 
Carlo (MCMC) approximation of the posterior distribution, the large number of CPUE measurements 
(several thousand tows), and the potentially high number of estimated parameters (> 75 for zero 
inflated GLMs), fitting CAR models will likely require extensive computing time.  Therefore, test models 
will be explored.  For abbreviated datasets of 3-4 years, both Bayesian formulations of standard and 
CAR models will be fitted and the results will be compared to identify optimal MCMC configurations 
(number of chains, draws, burn-in) and to evaluate effects of temporal/spatial correlation on estimated 
abundance indices.  If the effects of temporal/spatial correlation on estimated indices from abbreviated 
datasets are not significant, then CAR treatment of the full datasets may not be warranted.  However, if 
estimated abundance indices from the two model types are appreciably different, then CAR analysis of 
all available data will likely be necessary.   
 
Interfacing with broader CAMT activities 
It is important to emphasize that this project is intended to complement previous and ongoing 
investigations into the status of delta smelt.  Although a sole PI is listed on this project, the proposed 
research will not be conducted in isolation.  Formal efforts will be made to engage with other 
investigators associated with CAMT supported activities (e.g., Fall Outflow and Entrainment Teams) to 
ensure utility of research results and to serve as an additional analytical resource for activities beyond 
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those outlined in this proposal.  Interactions will be facilitated by periodic conference calls, webinars, 
and in-person meetings.  
    
Investigative Challenges 
General Limitation: This project is based on utilizing existing survey data to quantify the effects of 
various covariates on catchability and temporal/spatial correlation among samples.  While evaluation of 
these issues is important to understanding sources of uncertainty in available delta smelt survey data, 
this project cannot overcome potential limitation inherent to survey design.  Both the FMWT and SKT 
surveys are based on fixed station sampling designs, which implies that systematic changes in the 
population-level availability of delta smelt at sampling locations and subsequent survey-derived 
population quantities confounded.  Mechanistically, population-level changes in availability to surveys 
can occur if the overall distribution and habitat preferences of delta smelt have appreciably changed 
over time.  Additional exploratory field studies represent the only viable approach to addressing this 
concern. 
 
Catchability: The primary weakness in addressing question (1) again relates to the reliance on existing 
survey data that has been collected in accordance to a specific sampling design not specifically 
configured to investigate changes in survey catchability.  Using the aforementioned Z=ToD example, it 
would be best to systematically replicate trawl tows at randomly selected sampling locations 
throughout the Delta during morning and afternoon (and also during night to fully characterize diel 
migrations), which would more effectively ensure that the localized delta smelt abundance being 
sampled throughout the day is constant.  As mentioned above, application of GLM-type models 
requires making the assumption that delta smelt relative abundance is constant within combinations of 
other covariates included in the analysis.  If those other covariates represent spatiotemporal factors 
such as Year-Month-Area, then the proposed approach requires the assumption that delta smelt 
abundance is constant during morning and afternoon for any given Year-Month-Area combination.  
Perhaps this assumption is reasonable since survey areas are typically sampled within a few days.  
Despite potential limitations like the one described here, the proposed analyses remain valuable since 
they are based on the foundational information currently used to infer the population status of delta 
smelt, and also because they can be used comparatively once field studies specifically designed to 
assess impacts of covariates on relative catchability can be conducted.      
 
Temporal, Spatial Correlation:  Modern advancements in computing power have undoubtedly 
facilitated the application of sophisticated statistical methods in recent years.  Despite these 
advancements, complex statistical models fitted to very large datasets can require significant amounts 
of computing time.  The FMWT and SKT surveys are both longstanding and thousands of trawl tows 
have been conducted over the lifetimes of each sampling program.  While not insurmountable, a 
primary challenge in addressing question (2) is the reality that application of CAR models to the rich 
FMWT and SKT survey datasets using a Bayesian estimation framework will be time consuming (of 
course, this concern is only germane if temporal/spatial correlation among samples is detected). 
 
Technology Transfer 
A written report that provides a detailed summary of the study’s need/rationale, analytical methods, 
results, and conclusions will be submitted no later than 30 days after the end date of the project.  
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Findings will also be presented orally as needed/requested.  From the written report, at least one 
manuscript will be developed for publication in the peer-reviewed scientific literature.  All data utilized 
in the project are publically available and computer code developed specifically for this project will be 
made available upon request.  

 
Schedule 
The overall timeline for the project is expected to encompass 12 weeks, broken down as follows: 

 Weeks 1-4: Acquire FMWT and SKT survey data from the CDFW; basic QA/QC of data; 
exploratory analyses of delta smelt CPUE; determination of optimal model structure(s); 
estimation of abundance indices and covariate effects on survey catchability; application of data 
correction factors and estimation of alternative abundance indices; preliminary evaluation of 
temporal/spatial correlation among samples. 

 Weeks 5-10: Create test datasets; fit standard and Bayesian models to test data to ensure 
reproducibility of results estimation approaches; refine MCMC configuration; augment Bayesian 
models with CAR structure for test data; compare CAR and standard modeling results and 
abundance indices from test data; implement CAR model for full datasets. 

 Weeks 11-12: Report preparation and presentation of findings to CAMT.  
 
Budget 
Total project cost is $89,400 broken down as follows: $72,000 for completion of analyses and report 
preparation (60 working days at $1200/day [$150/hr]) and $17,400 for time and travel expenses for 
interfacing with investigators broadly associated with CAMT activities (assumed two trips to CA 
[$1,500/trip = $3,000; 3 days/trip = $7,200] and 6 days [$7,200]).  
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