
A Software Architecture-Based Framework for Highly
Distributed and Data Intensive Scientific Applications

Chris A. Mattmann1, 2 Daniel J. Crichton1 Nenad Medvidovic2 Steve Hughes1

1Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109, USA

{dan.crichton,mattmann,steve.hughes}@jpl.nasa.gov

2Computer Science Department
University of Southern California

Los Angeles, CA 90089, USA
{mattmann,neno}@usc.edu

ABSTRACT
Modern scientific research is increasingly conducted by virtual
communities of scientists distributed around the world. The data
volumes created by these communities are extremely large, and
growing rapidly. The management of the resulting highly
distributed, virtual data systems is a complex task, characterized
by a number of formidable technical challenges, many of which
are of a software engineering nature. In this paper we describe
our experience over the past seven years in constructing and
deploying OODT, a software framework that supports large,
distributed, virtual scientific communities. We outline the key
software engineering challenges that we faced, and addressed,
along the way. We argue that a major contributor to the success of
OODT was its explicit focus on software architecture. We
describe several large-scale, real-world deployments of OODT,
and the manner in which OODT helped us to address the domain-
specific challenges induced by each deployment.

Categories and Subject Descriptors
D.2 Software Engineering, D.2.11 Domain Specific Architectures

Keywords
OODT, Data Management, Software Architecture.

1. INTRODUCTION
Software systems of today are very large, highly complex,

often widely distributed, increasingly decentralized, dynamic, and
mobile. There are many causes behind this, spanning virtually all
facets of human endeavor: desired advances in education,
entertainment, medicine, military technology,
telecommunications, transportation, and so on.

One major driver of software’s growing complexity is
scientific research and exploration. Today’s scientists are solving
problems of until recently unimaginable complexity with the help
of software. They also actively and regularly collaborate with

colleagues around the world, something that has become possible
only relatively recently, again ultimately thanks to software. They
are collecting, producing, sharing, and disseminating large
amounts of data, which are growing by orders of magnitude in
volume in remarkably short time periods.

It is this latter problem that NASA’s Jet Propulsion
Laboratory (JPL) began facing several years ago. Until recently,
JPL would disseminate data collected by various instruments
(Earth-based, orbiting, and in outer space) to the interested
scientists around the United States by “burning” CD-ROMs and
mailing them via the U.S. Postal Service. In addition to being
slow, sequential, unidirectional, and lacking interactivity, this
method was expensive, costing hundreds of thousands of dollars.
Furthermore, the method was prone to security breaches, and the
exact data distribution (determining which data goes to which
destinations) had to be calculated for each individual shipment. It
had become increasingly difficult to manage this process as the
number of projects and missions, as well as involved scientists,
grew. An even more critical limiting factor became the sheer
volume of data that the current (e.g., Planetary Data System, or
PDS), pending (e.g., Mars Reconnaissance Orbiter, or MRO), and
planned (e.g., Lunar Reconnaissance Orbiter, or LRO) missions
would produce: from terabytes (PDS), to hundreds of terabytes
(MRO), to petabytes or more (LRO). Clearly, spending millions
of dollars just to distribute the data to scientists is impractical.

This prompted NASA’s Office of Space Science to explore
construction of an end-to-end software framework that would
lower the cost of distributing and managing scientific data, from
the inception of data at a science processing center to its ultimate
arrival on the desks of interested users. Because of increasing data
volumes, the framework had to be scalable and have native
support for evolution to hundreds of sites and thousands of data
types. Additionally, the framework had to enable the
virtualization of heterogeneous data (and processing) sources, and
to address wide-scale (national and international) distribution of
data. The framework needed to be flexible: it needed to support
fully automated processing of data throughout its lifecycle, while
still allowing interactivity and intervention from an operator when
needed. Furthermore because data is itself distributed across
NASA agencies, any software framework that distributes NASA’s
data would require the capability for tailorable levels of security
and for varying types of users belonging to multiple
organizations.

There were also miscellaneous issues of data ownership that
needed to be overcome. Ultimately, because NASA’s science data
is so distributed, the owners of data systems (e.g., a Planetary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE06’, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Science Principal Investigator) feel hard pressed to control their
data, as the successful operation and maintenance of their data
systems are essential services that they provide. As such, any
framework that virtualizes science data sources across NASA
should be transparent and unobtrusive: it should enable
dissemination and retrieval of data across data systems, each of
which may have their own external interfaces and services; at the
same time, it should enable scientists to maintain and operate their
data systems independently. Finally, to lower costs, once the
framework was built and installed, it needed to be reusable, free,
and distributable to other NASA sites and centers for use.

Over the past seven years we have designed, implemented
and deployed a framework called OODT (Object Oriented Data
Technology) that has met these rigorous demands. In this paper
we discuss the significant software engineering challenges we
faced in developing OODT. The primary objective of the paper is
to demonstrate how OODT’s explicit software architectural basis
enabled us to effectively address these challenges. In particular,
we will detail the architectural decisions we found most difficult
and/or critical to OODT’s ultimate success. We highlight several
representative examples of OODT’s use to date both at NASA
and externally. We contrast our solution with related approaches,
and argue that a major differentiator of this work, in addition to its
explicit architectural foundation, is its native support for
architecture-based development of distributed scientific
applications.

2. SOFTWARE ENGINEERING
CHALLENGES

To develop OODT, we needed to address several significant
software engineering challenges, the bulk of which surfaced in
light of the complex data management and distribution issues
regularly faced within a distributed, large-scale government
organization such as NASA. In this paper we will focus on nine
key challenges: Complexity, Heterogeneity, Location
Transparency, Autonomy, Dynamism, Scalability, Distribution,
Decentralization, and Performance.

Complexity – We envisioned OODT to be a large, multi-site,
multi-user, complex system. At the software level, complexity
ranged from understanding how to install, integrate, and manage
the software remotely deployed at participating organizations, to
understanding how to manage information such as access
privileges and security credentials across both NASA and non-
NASA sites. There were also complexities at the software
networking layer, including varying firewall capabilities at each
institution, and data repositories that would periodically go offline
and needed to be remotely restarted. Just understanding the
varying types of data held at sites linked together via OODT was
a significant task. Even sites within the same science domain
(e.g., planetary science) describe similar data sets in decidedly
different ways. Discerning in what ways these different data
models were common and what attributes of data could be shared,
done away with, or amended, was a huge challenge. Finally, the
different interfaces to data, ranging from third-party, well-
engineered database management systems, to in-house data
systems, ultimately to flat text file-based data was a particularly
difficult challenge that we had to hurdle.

Heterogeneity – In order to drive down the data management
costs for science missions, the same OODT framework needed to

span multiple science domains. The domains initially targeted
were earth and planetary; this has subsequently been expanded to
space, biomedical sciences, and the modeling and simulation
communities. As such, the same core set of OODT software
components, system designs, and implementation-level facilities
had to work across widely varying science domains.

The data management processes within the organizations that
use OODT also added to its heterogeneity. For instance, OODT
components needed to have interfaces with end users and support
interactive sessions, but also with scientific instruments, which
most likely were automatic and non-interactive. Scientific
instruments could push data to certain components in OODT,
while other OODT components would need to distribute data to
users outside of OODT. End-users in some cases wanted to
perform transformations on the data sent to them by OODT, and
then to return the data back into OODT. The framework needed to
support scenarios such as these seamlessly.

Many other constraints also imposed the heterogeneity
requirement on OODT. We can group these constraints into two
major categories:
• Organizational – As we briefly alluded above, discipline

experts who wanted to disseminate their data via OODT
really wanted the data to reside at their respective
institutions. This constraint non-negotiable, and significantly
impacted the space of technical solutions that we could
investigate for OODT.

• Technical – Since OODT had to federate many different data
holdings and catalogs, we faced the constraints of linking
them together and federating very different schemas and
varying levels of sophistication in the data system interfaces
(e.g., flat files, DBMS, web pages). Even those systems
managing data through “higher level APIs” and middleware
(e.g., RMI, CORBA, SOAP) proved non-trivial to integrate.
The constraints enjoined by heterogeneity alone led us to

realize that the OODT framework would need to draw heavily
from multiple areas. Database systems, although used
successfully for many years to manage large amounts of data at
many sites, lacked the flexibility and interface capability to
integrate data from other more crude APIs and storage systems
(such as a PI-led web site). Databases also did not address the
distribution of data and “ownership” issues. The advent of the
web, although a promising means for providing openness and
flexible interfaces to data, would not alone address the issues such
as multi-institutional security and access. Furthermore, its
request/reply nature would not easily handle other distribution
scenarios, e.g., subscribe/notify. Research in the area of grid
computing [1] has defined “out of the box” services for managing
data systems (e.g., GridFTP), but which utilized alone would not
address our other challenges (e.g., complexity).

Location Transparency – Even though data could potentially
be input into and output from the system from many
geographically disparate and distributed sites, it should appear to
the end-users as if the data flow occurred from a single location.
This requirement was reinforced by the need to dynamically add
data producers and consumers to a system supported by OODT,
as will be further discussed below.

Autonomy – When designing the OODT framework, we could
not dictate how data providers should store, process, find, evolve,
or retire their data. Instead, the framework needed to be

transparent, allowing data providers to continue with their regular
business processes, while managing and disseminating their
information unobtrusively.

Dynamism – It is expected that data providers for the most part
will be stable organizations. However, there are cases in which
new data producing (occasionally) and consuming (frequently)
nodes will need to be brought on-line. Back-end data sources need
to be pluggable, with little or no direct impact on the end-user of
the OODT system, or on the organization that owns the data
source. New end-users (or client hosts) should also be able to
“come and go” without any disruption to the rest of the system. In
the end, we realized this meant the whole infrastructure must be
capable of some level of dynamism in order to meet these
constraints.

Scalability – OODT needed to manage large volumes of data,
from at least hundreds of gigabytes at its inception to the current
missions which will produce hundreds of terabytes. The
framework needed to support at least dozens of institutional data
providers (which themselves may have subordinate data system
providers), dozens of user types (e.g., scientists, teachers,
students, policy makers), thousands of users, hundreds of
geographic sites, and thousands of different data types to manage
and disseminate.

Distribution – The framework should be able to handle the
physical distribution of data across sites nationally and
internationally, and ultimately the physical distribution of the
system interfaces which provide the data.

Decentralization – Each site may have its own data
management processes, interfaces and data types, which were
operating independently for some time. We needed to devise a
way of coordinating and managing data between these data sites
and providers without centralizing control of their systems, or
information. In other words, the requirement was that the different
sites retain their full autonomy, and that OODT adapts instead.

Performance – Despite its scale and interaction with many
organizations, data systems, and providers, OODT still needed to
perform under stringent demands. Queries for information needed
to be serviced quickly: in many cases response time under five
seconds was used as a baseline. Additionally, OODT needed to be
operational whenever any of the participating scientists wanted to
locate, access, or process their data.

3. BACKGROUND AND RELATED WORK
Several large-scale software technologies that distribute,

manage, and process information have been constructed over the
past decade. Each of these technologies falls into one or more of
four distinct areas: grid-computing, information integration,
databases, and middleware. In this section, we briefly survey
related projects in each of these areas and compare their foci and
accomplishments to those of OODT. Additionally, since a major
focal point of OODT is software architecture, we start out by
providing some brief software architecture background and
terminology to set the context.

Traditionally, software architecture has referred to the
abstraction of a software system into its fundamental building
blocks: software components, their methods of interaction (or
software connectors), and the governing rules that guide the

composition of software components and software connectors
(configurations) [2, 3]. Software architecture has been recognized
in many ways to be the linchpin of the software development
process. Ideally, the software requirements are reflected within
the software system’s components and interactions; the
components and interactions are captured within the system’s
architecture; and the architecture is used to guide the design,
implementation, and evolution of the system. Design guidelines
that have been proven effective are often codified into
architectural styles, while specific architectural solutions (e.g.,
concrete system structures, component types and interfaces, and
interaction facilities) within specific domains are captured as
reusable reference architectures.

Grid computing deals with highly complex and distributed
computational problems and large volume data management
tasks. Massive parallel computation, distributed workflow, and
petabyte scale data distribution are only a small cross-section of
the grid’s capabilities. Grid projects are usually broken down into
two areas. Computational grid systems are concerned with
solving complex scientific problems involving supercomputing
scale resources dispersed across various organizational
boundaries. The representative computational grid system is the
Globus Toolkit [4]. Globus is built on top of a web-services [5]
substrate and provides resource management components,
distributed workflow and security infrastructure. Other
computational grid systems provide similar capabilities. For
example, Alchemi [6] is a .NET-based grid technology that
supports distributed job scheduling and an object-oriented grid
development environment. JCGrid [7] is a light weight, Java-
based open source computational grid project whose goal is to
support distributed job scheduling and the splitting of CPU-
intensive tasks across multiple machines.

The other class of grid systems, Data grids, is involved in the
management, processing, and distribution of large data volumes to
disbursed and heterogeneous users, user types, and geographic
locations. There are several major data grid projects. The LHC
Computing Grid [8] is a system whose main goal is to provide a
data management and processing infrastructure for the high
energy physics community. The Earth System Grid [9] is geared
towards supporting climate modeling research and distribution of
climate data sets and metadata to the climate and weather
scientific community.

Two independently conducted studies [10, 11] have
identified three key areas that the current grid implementations
must address more effectively in order to promote data and
software interoperability: (1) formality in grid requirements
specification, (2) rigorous architectural description, and (3)
interoperability between grid solutions. As we will discuss in this
paper, our work to date on OODT has the potential to be a
stepping stone in each of these areas: its explicit focus on
architectures for data-intensive, “grid-like” systems naturally
addresses the three concerns.

There have been several well-known efforts within the AI
and database communities that have delved into the topic of
information integration, or the shared access, search, and retrieval
of distributed, heterogeneous information resources. Within the
past decade, there has been significant interest in building
information mediators that can integrate information from
multiple data sources. Mediators federate information by querying
multiple data sources, and fusing back the gathered results. The
representative systems using this approach include TSIMMS [12],

Information Manifold [13], The Internet Softbot [14], InfoSleuth
[15], Infomaster [16], DISCO [17], SIMS [18] and Ariadne [19].
Each of these approaches focuses on fundamental algorithmic
components of information integration: (1) formulating
expressive, efficient query languages (such as Theseus [20]) that
query many heterogeneous data stores; (2) accurately and reliably
describing both global, and source data models (e.g. the Global-
as-view [12] and Local-as-view [21] approaches); (3) providing a
means for global-to-source data model integration; and (4)
improving queries and deciding which data sources to query (e.g.
query reformulation [22] and query rewriting [22, 23]).

However, these algorithmic techniques fail to address the
software engineering side of information integration. For instance,
existing literature fails to answer questions such as, which of the
components in the different systems’ architectures are common;
how can they be reused; which portions of their implementations
are tied to (which) software components; which software
connectors are the components using to interact; are the
interaction mechanisms replaceable (e.g., can a client-server
interaction in Ariadne become a peer-to-peer interaction); and so
on. Additionally, none of the above related mediator systems have
formalized a process for designing, implementing, deploying, and
maintaining the software components belonging to each system.

Several middleware technologies such as CORBA,
Enterprise Java Beans [24], Java RMI [25], and more recently
SOAP and Web services [5] have been suggested as “silver
bullets” that address the problem of integrating and utilizing
heterogeneous software computing and data resources. Each of
these technologies provides three basic services: (1) an

implementation and composition framework for software
components, possibly written in different languages but
conforming to a specific middleware interface; (2) a naming
registry used to locate components; and (3) a set of basic services
such as (un-)marshalling of data, concurrency, distribution and
security.

Although middleware is very useful “glue” that can connect
software components written in different languages or deployed
in heterogeneous environments, middleware technologies do not
provide any “out of the box” services that deal with computing
and data resource management across organizational boundaries
and across computing environments at a national scale. These
kinds of services usually have to be engineered into the
middleware itself. We should note that in grid computing such
services are explicitly called out and provided at a higher layer of
abstraction. In fact, the combination of these higher-level grid
services and an underlying middleware platform is typically
referred to as a “grid technology” [11].

4. OODT ARCHITECTURE
OODT’s architecture is a reference architecture that is

intended to be instantiated and tailored for use across science
domains and projects. The reference architecture comprises
several components and connectors. A particular instance of this
reference architecture, that of NASA’s planetary data system
(PDS) project, is shown in Figure 1. OODT is installed on a given
host inside a “sandbox”, and is aware of and interacts only with
the designated external data sources outside its sandbox. OODT’s

m
essaging layer (H

TTP)

…
.. …

..

Figure 1. The Planetary Data System (PDS) OODT Architecture Instantiation

components are responsible for delivering data from
heterogeneous data stores, identifying and locating data within the
system, and ingesting and processing data into underlying data
stores. The connectors are responsible for integrating OODT with
heterogeneous data sources; providing reliable messaging to the
software components; marshalling resource descriptions and
transferring data between components; transactional
communication between components; and security related issues
such as identification, authorization, and authentication. In this
section, we describe the guiding principles behind the reference
architecture. We then describe each of the OODT reference
components and connectors in detail. In Section 5, we describe
specific instantiations of the reference architecture in the context
of several projects that are using OODT.

4.1 Guiding Principles
The software engineering challenges discussed in Section 2

motivated and framed the development of OODT. Conquering
these challenges led us to a set of four guiding principles behind
the OODT reference architecture.

The first guiding principle is division of labor. Each
capability provided by OODT (e.g., processing, ingestion, search,
and retrieval of data, access to heterogeneous data, and so on) is
carefully divided among separate, independent architectural
components and connectors. As will be further detailed below, the
principle is upheld through OODT’s rigorous separation of
concerns, and modularity enforced by explicit interfaces. This
principle addresses the complexity, heterogeneity, dynamism, and
decentralization challenges.

Closely related to the preceding principle is technology
independence. This principle involves keeping up-to-date with the
evolution of software technology (both in-house and third-party),
while avoiding tying the OODT architecture to any specific
implementation. By allowing us to select the technology most
appropriate to a given task or specific need, this principle helps us
to address the challenges of complexity, scalability, security,
distribution, location transparency, performance, and dynamism.
For instance, OODT’s initial reference implementation used
CORBA as the substrate for its messaging layer connector. When
the CORBA vendor decided to begin charging JPL significant
license fees (thus violating NASA’s objective of producing a
solution that would be free to its users), the principle of
technology independence came into play. Because the OODT
messaging layer connector supports a wrapper interface around
the lower-level distribution technology, we were able to replace
our initial CORBA-based connector with one using Java’s open
source RMI middleware, and redeploy the new connector to the
OODT user sites, within three person days.

Another guiding principle of OODT is the distinguishing of
metadata as a first-class citizen in the reference architecture, and
separating metadata from data. The job of metadata (i.e., “data
about data”) is to describe the data universe in which the system
is operating. Since OODT is meant to be a technology that
integrates diverse data sources, this data universe is highly
heterogeneous and possibly dynamic. Metadata in OODT is
meant to catalog information, allowing a user to locate and
describe the actual data in which she is interested. On the other
hand, the job of data in OODT is to describe physical or scientific
phenomena; it is the ultimate end user product that an OODT
system should deliver. This principle helps to address the

challenges of heterogeneity, autonomy of data providers, and
decentralization.

Separating the data model from the software is another key
principle behind the reference architecture. Akin to ontology/data-
driven systems, OODT components should not be tied to the data
and metadata that they manipulate. Instead, the components
should be flexible enough to understand many (meta-)data models
used across different scientific domains, without reengineering or
tailoring of the component implementations. This principle helps
to address the challenges of complexity and heterogeneity.

These four guiding principles are reified in a reference
architecture comprising four pairs of component types and two
classes of connectors organized in a canonical structure. One
instantiation of the reference architecture reflecting the canonical
structure is depicted in Figure 1. Each OODT architectural
element (component and connector) serves a specific purpose,
with its functionality exported through a well-defined interface.
This supports OODT’s constant evolution, allowing us to add,
remove, and substitute, if necessary dynamically (i.e., at runtime),
elements of a given type. It also allows us to introduce flexibility
in the individual instances of the reference architecture while, at
the same time, controlling the legal system configurations.
Finally, the explicit connectors and well-defined component
interfaces allow OODT in principle to integrate with a wide
variety of third-party systems (e.g., [26]). The outcome of the
guiding principles (described above) and design decisions
(detailed below) is an architecture that is “easy to build, hard to
break”.

4.2 OODT Components
4.2.1 Product Server and Product Client

The Product Server is used to retrieve data from
heterogeneous data stores. The product server accepts a query
structure that identifies a set of zero or more products which
should be returned the issuer of the query. A product is a unit of
data in OODT and represents anything that a user of the system is
interested in retrieving: a JPEG image of Mars, an MS Word
document, a zip file containing text file results of a cancer study,
and so on. Product servers can be located at remote data sites,
geographically and/or institutionally disparate from other OODT
components. Alternatively, product servers can be centralized,
located at a single site. The objective of the product server is to
deliver data from otherwise heterogeneous data stores and
systems. As long as a data store (or system) provides some kind
of access interface to get its data, a product server can “wrap”
those interfaces with the help of Handler connectors described in
Section 4.3 below.

The Product Client component communicates with a product
server via the Messaging Layer connectors described in Section
4.3. A product client resides at the end-user’s (e.g., scientist’s)
site. It must know the location of at least one product server, and
the query structure that identifies the set of products that the user
wants to retrieve. At the same time, it is completely insulated
from any changes in the physical location or actual representation
of the data; its only interface is to the product server(s). Many
product clients may communicate with the same product server,
and many product servers can return data to the same product
client. This adds flexibility to the architecture without introducing
unwanted long-term dependencies: a product client can be added,

removed, or replaced with another one that depends on different
product servers, without any effect on the rest of the architecture.

4.2.2 Profile Server and Profile Client
The Profile Server manages resource description

information, i.e., metadata, in a system built with OODT.
Resource description information is divided into three main
categories:
• Housekeeping Information – Metadata such as ID, Last

Modified Date, Last Revised By. This information is kept
about the resource descriptions themselves and is used by the
profile server to inventory and catalog resource descriptions.
This is a fixed set of metadata.

• Resource Information – This includes metadata such as Title,
Author, Creator, Publisher, Resource Type, and Resource
Location. This information is kept for all the data in the
system, and is an extended version of the Dublin Core
Metadata for describing electronic resources [27]. This is
also a fixed set of metadata.

• Domain-Specific Information – This includes metadata
specific to a particular data domain. For instance, in a cancer
research system this may include metadata such as Blood
Specimen Type, Site ID, and Protocol/Study Description.
This set of metadata is flexible and is expected to change.

As with product servers, profile servers can be decentralized at
multiple sites or centralized at a single site. The objective of the
profile server is to deliver metadata that gives a user enough
information to locate the actual data within OODT regardless of
the underlying system’s exact configuration, and degrees of
complexity and heterogeneity; the user then retrieves the data via
one or more product servers. Because profile servers do not serve
the actual data, they need not have a direct interface to the data
that they describe. In addition to the complete separation of duties
between profile and product servers, this ensures their location
independence, allows their separate evolution, and minimizes the
effects of component and/or network failures in an OODT system.

Profile Client components communicate with profile servers
over the messaging layer connectors. The client must know the
location of the profile server, and must provide a query that
identifies the metadata that a user is interested in retrieving. There
can be many profile clients speaking with a single profile server,
and many profile servers speaking with a single profile client.
The architectural effects are analogous to those in the case of
product clients and servers.

4.2.3 Query Server and Query Client
The Query Server component provides an integrated search

and retrieval capability for the OODT reference architecture.
Query servers interact with profile and product servers to retrieve
metadata and data requested by system users. A query server is
seeded with an initial set of references to profile servers. Upon
receiving a query from a user, the query server passes it along to
each profile server from its list, and collects the metadata
returned. Part of this metadata is a resource location (recall
Section 4.2.2) in the form of a URI [28]. A URI can be a link to a
product server, to a web site with the actual data, or to some
external data providing system. This directly supports
heterogeneity, location transparency, and autonomy of data
providers in OODT.

Another novel aspect of OODT’s architecture is that if a
profile server is unable to service the query, or if it believes that

other profile servers it is aware of may contain relevant metadata,
it will return the URIs of those profile servers; the query server
may then forward the query to them. As a result, query servers are
completely decoupled from product servers (and from any
“exposed” external data sources), and are also decoupled from
most of the profile servers. In turn, this lessens the complexity of
implementing, integrating, and evolving query servers. Once the
resource metadata is returned, the query server will either allow
the user herself to use the supplied URIs to find the data in which
she was interested (interactive mode), or it will retrieve, package,
and deliver the data to the user (non-interactive mode). As with
the product and profile servers, query servers can be centrally
located at a single site, or they can be decentralized across
multiple sites.

Query Client components communicate with the query
servers. The query client must provide a query server with a query
that identifies the data in which the user is interested, and it must
set a mode for the query server (interactive or non-interactive
mode). The query client may know the location of the query
server that it wants to contact, or it may rely on the messaging
layer connector to route its queries to one or more query servers.

4.2.4 Catalog and Archive Server and Client
The Catalog and Archive Server (CAS) component in OODT

is responsible for providing a common mechanism for ingestion
of data into a data store, including any processing required as a
result of ingestion. For instance, prior to the ingestion of a poor-
resolution image of Mars, the image may need to be refined and
the resolution improved. CAS would handle this type of
processing. Any data ingested into CAS must include associated
metadata information so that the data can be cataloged for search
and retrieval purposes. Upon ingestion, the data is sent to a data
store for preservation, and the corresponding metadata is sent to
the associated catalog. The data store and catalog need not be
located on the same host; they may be located on remote sites
provided there is an access mechanism to store and retrieve data
from each. The goal of CAS is to streamline and standardize the
process of adding data to an OODT-aware system. Note that a
system whose data stores were populated prior to its integration
into OODT can still use CAS for its new data. Since the CAS
component populates data stores and catalogs with both data and
metadata, specialized product and profile server components have
been developed to serve data and metadata from the CAS backend
data stores and catalogs more efficiently. Any older data can still
be served with existing product and profile servers.

The Archive Client component communicates with CAS. The
archive client must know the location of the CAS component, and
must provide it with data to ingest. Many archive clients can
communicate with a single CAS component, and vice versa. Both
the archive client and CAS components are completely
independent of the preceding three pairs of component types in
the OODT reference architecture.

4.3 OODT Connectors
4.3.1 Handler Connectors

Handler connectors are responsible for enabling the
interaction between OODT’s components and third-party data
stores. A handler connector performs the transformation between
an underlying (meta-)data store’s internal API for retrieving data
and its (meta-)data format on the one hand, and the OODT system

on the other. Each handler connector is typically developed for a
class of data stores and metadata systems. For example, for a
given DBMS such as Oracle, and a given internal representation
schema for metadata, a generic Oracle handler connector is
typically developed and then reused. Similarly, for a given
filesystem scheme for storing data, a generic filesystem handler
connector is developed and reused across like filesystem data
stores.

Each profile server and product server relies on one or more
handler connectors. Profile servers use profile handlers, and
product servers use query handlers. Handler connectors thereby
completely insulate product and profile servers from the third-
party data stores. Handlers also allow for different types of
transformations on (meta-)data to be introduced dynamically
without any effect on the rest of OODT components. For
example, a product server that distributes Mars image data might
be serviced by a query handler connector that returns high-
resolution (e.g., 10 GB) JPEG image files of the latest summit
climbed by a Mars rover; if the system ends up experiencing
performance problems, another handler may be (temporarily)
added to return lower-resolution (e.g., 1 MB) JPEG image files of
the same scenario. Likewise, a profile server may have two
profile handler connectors, one that returns image-quality
metadata (e.g., resolution and bits/pixel) and another that returns
instrument metadata about Mars rover images (e.g., instrument
name or image creation date).

4.3.2 Messaging Layer Connector
The Messaging Layer connector is responsible for

marshalling data and metadata between components in an OODT
system. The messaging layer must keep track of the locations of
the components, what types of components reside in which
locations, and if components are still running or not. Additionally,
the messaging layer is responsible for taking care of any needed
security mechanisms such as authentication against an LDAP
directory service, or authorization of a user to perform certain
role-based actions.

The messaging layer in OODT provides synchronous
interaction among the components, and some delivery guarantees
on messages transferred between the software components.
Typically in any large-scale data system, the asynchronous mode
of interaction is not encouraged because partial data transfers are
of no use to users such as scientists who need to make analysis on
entire data sets.

The messaging layer supports communication between any
number of connected OODT software components. In addition,
the messaging layer natively supports connections to other
messaging layer connectors as well. This provides us with the
ability to extend and adapt an OODT system’s architecture, as
well as easily tailor the architecture for any specific interaction
needs (e.g., by adding data encryption and/or compression
capabilities to the connector).

5. EXPERIENCE AND CASE STUDIES
The OODT framework has been used both within and

outside NASA. JPL, NASA’s Ames Research Center, the
National Institutes of Health (NIH), the National Cancer Institute
(NCI), several research universities, and U.S. Federally Funded
Research and Development Centers (FFRDCs) are all using
OODT in some form or fashion. OODT is also available for
download through a large open-source software distributor [29].

OODT components are found in planetary science, earth science,
biomedical, and clinical research projects. In this section, we
discuss our experience with OODT in several representative
projects within these scientific areas. We compare and contrast
how the projects were handled before and after OODT. We sketch
some of the domain-specific technical challenges we encountered
and identify how OODT helped to solve them.

To begin using OODT, a user designs a deployment
architecture from one or more of the reference OODT
components (e.g., product and profile servers), and the reference
OODT connectors. The user must determine if any existing
handler connectors can be reused, or if specialized handler
connectors need to be developed. Once all the components are
ready, the user has two options for deploying her architecture to
the target hosts: (1) the user may translate her design into a
specialized OODT deployment descriptor XML file, which can
then be used to start each program on the target host(s); or (2) the
user can deploy her OODT architecture using a remote server
control component, adding components, and connectors via a
graphical user interface. The GUI allows the user to send
component and connector code to the target hosts, to start, shut-
down, and restart the components and connectors, and to monitor
their health during execution.

5.1 Planetary Data System
One of the flagship deployments of OODT has been for

NASA’s Planetary Data System (PDS) [30]. PDS consists of
seven “discipline nodes” and an engineering and management
node. Each node resides at a different U.S. university or
government agency, and is managed autonomously.

For many years PDS distributed its data and metadata on
physical media, primarily CD-ROM. Each CD-ROM was
formatted a according to a “home-grown” directory layout
structure called an archive volume, which later was turned into a
PDS standard. PDS metadata was constructed using a common,
well-structured set of 1200 metadata elements, such as Target
Name and Instrument Type, that were identified from the onset of
the PDS project by planetary scientists. Beginning in the late
1990s the advent of the WWW and the increasing data volumes of
missions led NASA managers to impose a new paradigm for
distributing data to the users of the PDS: data and metadata were
now to be distributed electronically, via a single, unified web
portal. The web portal and accompanying infrastructure to
distribute PDS data and metadata was built in 2001 using OODT
in the manner depicted in Figure 1.

We faced several technical challenges deploying OODT to
PDS. PDS data and metadata were highly distributed, spanning all
seven of the scientific discipline nodes across the country.
Although the entire data volume across PDS at the time was
around 7 terabytes, it was estimated that the volume would grow
to 10 terabytes by 2004. Consequently, the system needed to be
scalable and respond to large growth spurts caused by new data
producing missions. The flexibility and modularity of the OODT
product and profile server components were particularly useful in
this regard. Using a product and/or profile server, each new data
producing system in the PDS could be dynamically “plugged in”
to the existing PDS infrastructure that we constructed, without
disturbing existing components and processes.

We also faced the problem of heterogeneity. Almost every
node within PDS had a different operating system, ranging from
Linux, to Windows, to Solaris, to Mac OS X. Each node

EDRN
Query
Server

m
essaging layer (R

M
I)

Product
Server

DBMS
(Specimen
Metadata)

moffitt.usf.edu (win2k server)

MS SQL DBMS
(Specimen
Products)

Specimen
Query

Handler

Specimen Profile
Handler (MS SQL)

OODT “Sandbox”

OODT “Sandbox”

Product
Server

Profile
Server

another.erne.server (AnotherOS)

CAS Profile
Handler

CAS Query
Handler

OODT “Sandbox”
Catalog and

Archive Server

Lung Images
(Filesystem)

Other
Applications

ginger.fhcrc.org (win2k)

Other Applications

ERNE Web
Portal

(Query Client)

user host

Profile
Client

Product
Client

Profile ServerOther
Applications

Other
Applications

Other Applications

Other Applications

Specimen Inventory
(MS SQL)

Other Applications

Other Applications

pds.jpl.nasa.gov (Linux)
Legend:

OODT
Component

Data/metadata
store

OODT Connector Hardware
host

OODT
controlled
portion of
machine

data/control flow
Black Box

Figure 2. The Early Detection Research Network (EDRN) OODT Architecture Instantiation

maintained its own local catalog system. Although each node in
PDS had different file system implementations dictated by their
OS, each node stored their data and metadata according to the
archive volume structure. Because of this, we were able to write a
single, reusable PDS Query Handler which could serve back
products from a PDS archive volume structure located on a file
system. Plugging into each node’s catalog system proved to be a
significant challenge. For nearly all of the nodes, specialized
profile handler connectors were constructed to interface with the
underlying catalog systems, which ranged from static text files
called PDS label files to dynamic web site inventory systems
constructed using Java Server Pages. Because each of the catalogs
tagged PDS data using the common set of 1200 elements, we
were able to share much of the code base among the profile
handler connectors, ultimately only changing the portion of the
code that made the particular JSP page call, or read the selected
set of metadata from the label file. The entire code base of the
PDS including all the domain specific handler connectors is only
slightly over 15 KSLOC, illustrating the high degree of
reusability provided by the OODT framework.

5.2 Early Detection Research Network
OODT is also supporting the National Cancer Institute’s

(NCI) Early Detection Research Network (EDRN). EDRN is a
distributed research program that unites researchers from over
thirty institutions across the United States. Tens of thousands of
scientists participate in the EDRN. Each institution is focused on
the discovery of cancer biomarkers as indicators for disease [31].

A critical need for the EDRN is an electronic infrastructure to
support discovery and validation of these markers.

In 2001 we worked with the EDRN program to develop the
first component of their electronic biomarker infrastructure called
the EDRN Resource Network Exchange (ERNE). The (partial)
corresponding architecture is depicted in Figure 2. One of the
major goals of ERNE was to provide real-time access to bio-
specimen information across the institutions of the EDRN. Bio-
specimen information typically consisted of gigabytes of
specimen images, and location and contact metadata for obtaining
the specimen from its origin study institution. The previous
method of obtaining bio-specimen information was very human-
intensive: it involved phone calls and some forms of electronic
communication such as email. Specimen information was not
searchable across institutions participating in the EDRN. The bio-
specimen catalogs were largely out-of-date, and out-of-synch with
current holdings at each participating institution.

One of the initial technical challenges we faced with EDRN
was scale. The EDRN was over three times as large as the PDS.
Because of this we chose to target ten institutions initially, rather
than the entire set of thirty one. Again, OODT’s modularity and
scalability came into play as we could phase deployment at each
deployment institution. As we instantiated new product, profile,
query, and archive servers at each institution, we could do so
without interrupting any existing OODT infrastructure already
deployed.

Another challenge that we encountered was dealing with
each participating site’s Institutional Review Board (IRB). An
IRB is required to review and ensure compliance of projects with

federal laws related to working with data from research projects
involving human subjects. To satisfy the IRB, any OODT
components deployed at an EDRN site had to provide an adequate
security capability in order to get approval to share the data
externally from an institution. OODT’s separation of data and
metadata explicitly allowed us to satisfy this requirement. We
designed ERNE so that each institution could remain in control of
their specimen holding data by instantiating product server
components at each site, rather than distributing the information
across ERNE which would have violated the IRB agreements.

Another significant challenge we faced in developing ERNE
was lack of a consistent metadata model for each ERNE site. We
were forced to develop a common specimen metadata model and
then to create specific mappings to link each local site to the
common model. OODT aided us once again in this endeavor as
the common mappings we developed were easily codified into a
query handler connector, and reused across each ERNE site.

The entire code base of ERNE, including all its specialized
handler connectors is only slightly over 5.3 KSLOC, highlighting
the high degree of reusability of the shared framework code base
and the handler code base.

5.3 Science Processing Systems
OODT has also been deployed in several science processing

system missions both, operational and under development. Due to
space limitations, we can only briefly summarize each of the
OODT deployments in these systems.

SeaWinds, a NASA-funded earth science instrument flying
on the Japanese ADEOS-II spacecraft, used the OODT CAS
component as a workflow and processing component for its
Processing and Analysis Center (SeaPAC). SeaWinds produced
several gigabytes of data during its six year mission. CAS was
used to control the execution and data flow of mission-specific
data processor components, which calibrated and created derived
data products from raw instrument data, and archived those
products for distribution into the data store managed by CAS. A
major challenge we faced during the development of SeaPAC was
that the processor components were developed by a group
outside of the SeaWinds project. We had to provide a mechanism
for integrating their source code into the OODT SeaPAC
framework. OODT’s separation of concerns allowed us to address
this issue with relative ease: once the data processors were
finished, we were able wrap and tailor them internally within
CAS, without disturbing the existing SeaPaC infrastructure.

The success of the CAS within SeaWinds led to its reuse on
several different missions. Another earth science mission called
QuikSCAT retrofitted and replaced some of their existing
processing components with CAS, using the SeaWinds experience
as an example. The Orbiting Carbon Observatory (OCO) mission
that will fly in 2009, and that is currently under development, is
also utilizing CAS to ingest and process existing FTS CO2
spectrometer data from earth-based instruments. The James Web
Telescope (JWT) is using the CAS for to implement its workflow
and processing capabilities for astrophysics data and metadata.
Each of these science processing systems will face similar
technical challenges, including separation of concerns between
the actual processing framework and the developers writing the
processor code, the volume of data that must be handled by the
processing system (OCO is projected to produce over 150
terabytes), and the flexibility and tailorability of the workflow

needed to process the data. We believe that OODT is uniquely
positioned to address these difficult challenges.

5.4 Computer Modeling Simulation and
Visualization

OODT has also been deployed to aid the Computer
Modeling Simulation and Visualization (CMSV) community at
JPL, by linking together several institutional model repositories
across the organizations within the lab, and creating a web portal
interface to query the integrated model repositories. We
developed specialized profile server components that locate and
link to different model resources across JPL, such as power
subsystem models of the Mars Exploration Rovers (MER), CAD-
drawing models of different spacecraft assembly parts, and
systems architecture models for engineering and design of
spacecraft. Each of these different model types lived in separate
independent repositories across JPL. For instance, the CAD
models were stored in a commercial product called TeamCenter
Enterprise [32], while the power and systems architecture models
were stored in a commercial product called Xerox Docushare
[33].

To integrate these model repositories for CMSV, we had to
derive a common set of metadata across the wide spectrum of
different model types that existed at JPL. OODT’s separation of
data from metadata allowed us to rapidly instantiate our common
metadata model once we developed it, by constructing specialized
profile handler connectors that mapped each repository’s local
model to the common model. Reusability levels were high across
the connectors, resulting in an extremely small code base of 2.57
KSLOC.

Another challenge in light of this mapping activity was
interfacing with the APIs of the underlying model repositories. In
the above two cases, the APIs were commercial products, and
poorly documented. In some cases, such as the Docushare
repository, the APIs did not fully conform to their stated
specifications. The division of labor amongst OODT components
came into play on this task. It allowed us to focus on deploying
the rest of the OODT supporting infrastructure, such as the web
portal, and the profile handler connectors, and not getting stalled
waiting for the support teams from each of the commercial
vendors to debug our API problems. Once the OODT CMSV
infrastructure was deployed, the modeling and simulation
community at JPL immediately began adopting it and sharing
their models across the lab. During the past year, the system has
received around 40,000 hits on the web portal, and over 9,000
queries for models.

6. CONCLUSIONS
When the need arose at NASA seven years ago for a data

distribution and management solution that satisfied the formidable
requirements outlined in this paper, it was not clear to us initially
how to approach the problem. On the surface, several applicable
solutions already existed (middleware, information integration
systems, and the emerging grid technologies). Adopting one of
them seemed to be a preferable path because it would have saved
us precious time. However, upon closer inspection we realized
that each of these options could be instructive, but that none of
them solved the problem we were facing (and that even some of
these technologies themselves were facing).

The observation that directly inspired OODT was that we
were dealing with software engineering challenges, and that those

challenges naturally required a software engineering solution.
OODT is a large, complex, dynamic system, distributed across
many sites, servicing many different users, and classes of users,
with large amounts of heterogeneous data, possibly spanning
multiple domains. Software engineering research and practice
both suggest that success in developing such a system will be
determined to a large extent by the system’s software
architecture. It therefore became imperative that we rely on our
experience within the domain of data-intensive systems (e.g.,
JPL’s PDS project), as well as our study of related research and
practice, in order to develop an architecture for OODT that will
address the challenges we discussed in Section 2. Once the
architecture was designed and evaluated, OODT’s initial
implementation and its subsequent adaptations followed naturally.

As OODT’s developers we are heartened, but as software
engineering researchers and practitioners disappointed, that
OODT still appears to be the only system of its kind. The
intersection of middleware, information management, and grid
computing is rapidly growing, yet it is still characterized by one-
off solutions targeted at very specific problems in specific
domains. Unfortunately, these solutions are sometimes clever by
accident and more frequently little more than “hacks”. We
believe that OODT’s approach is more appropriate, more
effective, more broadly applicable, and certainly more helpful to
developers of future systems in this area. We consider OODT’s
demonstrated ability to evolve and its applicability in a growing
number of science domains to be a testament to its explicit,
carefully crafted software architecture.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the Jet

Propulsion Laboratory, managed by the California Institute of
Technology. Effort also supported by the National Science
Foundation under Grant Numbers CCR-9985441 and ITR-
0312780.

8. REFERENCES
[1] A. Chervenak, I. Foster, et al., "The Data Grid: Towards an

Architecture for the Distributed Management and Analysis of
Large Scientific Data Sets," J. of Network and Computer
Applications, vol. 23, pp. 187-200, 2000.

[2] N. Medvidovic and R. N. Taylor, "A Classification and
Comparison Framework for Software Architecture Description
Languages," IEEE TSE, vol. 26, pp. 70-93, 2000.

[3] D. E. Perry and A. L. Wolf, "Foundations for the Study of
Software Architecture," Software Engineering Notes (SEN),
vol. 17, pp. 40-52, 1992.

[4] "The Globus Alliance (http://www.globus.org)," 2005.
[5] "Webservices.org (http://www.webservices.org)," 2005.
[6] A. Luther, R. Buyya, et al., "Alchemi: A .NET-based

Enterprise Grid Computing System," in Proc. of 6th
International Conference on Internet Computing, Las Vegas,
NV, USA, 2005.

[7] "JCGrid Web Site (http://jcgrid.sourceforge.net)," 2005.
[8] "LHC Computing Grid (http://lcg.web.cern.ch/LCG/)," 2005.
[9] D. Bernholdt, S. Bharathi, et al., "The Earth System Grid:

Supporting the Next Generation of Climate Modeling
Research," Proceedings of the IEEE, vol. 93, pp. 485-495,
2005.

[10] A. Finkelstein, C. Gryce, et al., "Relating Requirements and
Architectures: A Study of Data Grids," J. of Grid Computing,
vol. 2, pp. 207-222, 2004.

[11] C. A. Mattmann, N. Medvidovic, et al., "Unlocking the Grid,"
in Proc. of CBSE, St. Louis, MO, pp. 322-336, 2005.

[12] J. Hammer, H. Garcia-Molina, et al., "Information translation,
mediation, and mosaic-based browsing in the tsimmis system,"
in Proc. of ACM SIGMOD International Conference on
Management of Data, San Jose, CA, pp. 483-487, 1995.

[13] T. Kirk, A. Y. Levy, et al., "The information manifold,"
Working Notes of the AAAI Spring Symposium on Information
Gathering in Heterogeneous, Distributed Environment, Menlo
Park, CA, Technical Report SS-95-08, 1995.

[14] O. Etzioni and D. S. Weld, "A softbot-based interface to the
Internet," CACM, vol. 37, pp. 72-76, 1994.

[15] A. Goñi, A. Illarramendi, et al., "An optimal cache for a
federated database system," Journal of Intelligent Information
Systems, vol. 9, pp. 125-155, 1997.

[16] M. R. Genesereth, A. Keller, et al., "Infomaster: An
information integration system," in Proc. of ACM SIGMOD
International Conference on Management of Data, Tucson,
AZ, pp. 539-542, 1997.

[17] A. Tomasic, L. Raschid, et al., "A data model and query
processing techniques for scaling access to distributed
heterogeneous databases in disco," IEEE Transactions on
Computers, 1997.

[18] Y. Arens, C. A. Knoblock, et al., "Query Reformulation for
Dynamic Information Integration," Journal of Intelligent
Information Systems, vol. 6, pp. 99-130, 1996.

[19] J. Ambite, N. Ashish, et al., "Ariadne: A system for
constructing mediators for internet sources," in Proc. of ACM
SIGMOD International Conference on Management of Data,
Seattle, WA, pp. 561-563, 1998.

[20] G. Barish and C. A. Knoblock, "An Expressive and Efficient
Language for Information Gathering on the Web," in Proc. of
6th International Conference on AI Planning and Scheduling
(AIPS-2002) Workshop, Toulouse, France, 2002.

[21] A. Y. Halevy, "Answering queries using views: A survey,"
VLDB Journal, vol. 10, pp. 270-294, 2001.

[22] J. L. Ambite, C. A. Knoblock, et al., "Compiling Source
Descriptions for Efficient and Flexible Information
Integration," Information Systems Journal, vol. 16, pp. 149-
187, 2001.

[23] E. Lambrecht and S. Kambhampati, "Planning for Information
Gathering: A Tutorial Survey," ASU CSE Technical Report
96-017, May 1997.

[24] "Enterprise Java Beans (http://java.sun.com/ejb)," pp. 2005.
[25] "Java RMI (http://java.sun.com/rmi/)," 2005.
[26] C. A. Mattmann, S. Malek, et al., "GLIDE: A Grid-based

Lightweight Infrastructure for Data-intensive Environments,"
in Proc. of European Grid Conference, Amsterdam, the
Netherlands, pp. 68-77, 2005.

[27] DCMI, "Dublin Core Metadata Element Set," 1999.
[28] T. Berners-Lee, R. Fielding, et al., "Uniform Resource

Identifiers (URI): Generic Syntax," 1998.
[29] "Open Channel Foundation: Request Object Oriented Data

Technology (OODT) -
(http://openchannelsoftware.com/orders/index.php?group_id=3
32)," 2005.

[30] J. S. Hughes and S. K. McMahon, "The Planetary Data System.
A Case Study in the Development and Management of Meta-
Data for a Scientific Digital Library.," in Proc. of ECDL, pp.
335-350, 1998.

[31] S. Srivastava, Informatics in proteomics. Boca Raton, FL:
Taylor & Francis/CRC Press, 2005.

[32] "UGS Products: TeamCenter
(http://www.ugs.com/products/teamcenter/)," 2005.

[33] "Document Management | Xerox Docushre
(http://docushare.xerox.com/ds/)," 2005.

http://www.globus.org),/
http://www.webservices.org),/
http://jcgrid.sourceforge.net),/
http://lcg.web.cern.ch/LCG/),
http://java.sun.com/ejb),
http://java.sun.com/rmi/),
http://openchannelsoftware.com/orders/index.php?group_id=332),
http://openchannelsoftware.com/orders/index.php?group_id=332),
http://www.ugs.com/products/teamcenter/),
http://docushare.xerox.com/ds/),

	INTRODUCTION
	SOFTWARE ENGINEERING CHALLENGES
	BACKGROUND AND RELATED WORK
	OODT ARCHITECTURE
	Guiding Principles
	OODT Components
	Product Server and Product Client
	Profile Server and Profile Client
	Query Server and Query Client
	Catalog and Archive Server and Client

	OODT Connectors
	Handler Connectors
	Messaging Layer Connector

	EXPERIENCE AND CASE STUDIES
	Planetary Data System
	Early Detection Research Network
	Science Processing Systems
	Computer Modeling Simulation and Visualization

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

