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ABSTRACT 
Modern scientific research is increasingly conducted by virtual 
communities of scientists distributed around the world. The data 
volumes created by these communities are extremely large, and 
growing rapidly. The management of the resulting highly 
distributed, virtual data systems is a complex task, characterized 
by a number of formidable technical challenges, many of which 
are of a software engineering nature.  In this paper we describe 
our experience over the past seven years in constructing and 
deploying OODT, a software framework that supports large, 
distributed, virtual scientific communities. We outline the key 
software engineering challenges that we faced, and addressed, 
along the way. We argue that a major contributor to the success of 
OODT was its explicit focus on software architecture. We 
describe several large-scale, real-world deployments of OODT, 
and the manner in which OODT helped us to address the domain-
specific challenges induced by each deployment.  

Categories and Subject Descriptors 
D.2 Software Engineering, D.2.11 Domain Specific Architectures 

Keywords 
OODT, Data Management, Software Architecture. 

1. INTRODUCTION 
Software systems of today are very large, highly complex, 

often widely distributed, increasingly decentralized, dynamic, and 
mobile.  There are many causes behind this, spanning virtually all 
facets of human endeavor: desired advances in education, 
entertainment, medicine, military technology, 
telecommunications, transportation, and so on.   

One major driver of software’s growing complexity is 
scientific research and exploration.  Today’s scientists are solving 
problems of until recently unimaginable complexity with the help 
of software.  They also actively and regularly collaborate with 

colleagues around the world, something that has become possible 
only relatively recently, again ultimately thanks to software. They 
are collecting, producing, sharing, and disseminating large 
amounts of data, which are growing by orders of magnitude in 
volume in remarkably short time periods. 

It is this latter problem that NASA’s Jet Propulsion 
Laboratory (JPL) began facing several years ago.  Until recently, 
JPL would disseminate data collected by various instruments 
(Earth-based, orbiting, and in outer space) to the interested 
scientists around the United States by “burning” CD-ROMs and 
mailing them via the U.S. Postal Service.  In addition to being 
slow, sequential, unidirectional, and lacking interactivity, this 
method was expensive, costing hundreds of thousands of dollars. 
Furthermore, the method was prone to security breaches, and the 
exact data distribution (determining which data goes to which 
destinations) had to be calculated for each individual shipment. It 
had become increasingly difficult to manage this process as the 
number of projects and missions, as well as involved scientists, 
grew.  An even more critical limiting factor became the sheer 
volume of data that the current (e.g., Planetary Data System, or 
PDS), pending (e.g., Mars Reconnaissance Orbiter, or MRO), and 
planned (e.g., Lunar Reconnaissance Orbiter, or LRO) missions 
would produce: from terabytes (PDS), to hundreds of terabytes 
(MRO), to petabytes or more (LRO).  Clearly, spending millions 
of dollars just to distribute the data to scientists is impractical. 

This prompted NASA’s Office of Space Science to explore 
construction of an end-to-end software framework that would 
lower the cost of distributing and managing scientific data, from 
the inception of data at a science processing center to its ultimate 
arrival on the desks of interested users. Because of increasing data 
volumes, the framework had to be scalable and have native 
support for evolution to hundreds of sites and thousands of data 
types. Additionally, the framework had to enable the 
virtualization of heterogeneous data (and processing) sources, and 
to address wide-scale (national and international) distribution of 
data. The framework needed to be flexible: it needed to support 
fully automated processing of data throughout its lifecycle, while 
still allowing interactivity and intervention from an operator when 
needed. Furthermore because data is itself distributed across 
NASA agencies, any software framework that distributes NASA’s 
data would require the capability for tailorable levels of security 
and for varying types of users belonging to multiple 
organizations. 

There were also miscellaneous issues of data ownership that 
needed to be overcome. Ultimately, because NASA’s science data 
is so distributed, the owners of data systems (e.g., a Planetary 
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Science Principal Investigator) feel hard pressed to control their 
data, as the successful operation and maintenance of their data 
systems are essential services that they provide. As such, any 
framework that virtualizes science data sources across NASA 
should be transparent and unobtrusive: it should enable 
dissemination and retrieval of data across data systems, each of 
which may have their own external interfaces and services; at the 
same time, it should enable scientists to maintain and operate their 
data systems independently. Finally, to lower costs, once the 
framework was built and installed, it needed to be reusable, free, 
and distributable to other NASA sites and centers for use. 

Over the past seven years we have designed, implemented 
and deployed a framework called OODT (Object Oriented Data 
Technology) that has met these rigorous demands. In this paper 
we discuss the significant software engineering challenges we 
faced in developing OODT.  The primary objective of the paper is 
to demonstrate how OODT’s explicit software architectural basis 
enabled us to effectively address these challenges.  In particular, 
we will detail the architectural decisions we found most difficult 
and/or critical to OODT’s ultimate success. We highlight several 
representative examples of OODT’s use to date both at NASA 
and externally. We contrast our solution with related approaches, 
and argue that a major differentiator of this work, in addition to its 
explicit architectural foundation, is its native support for 
architecture-based development of distributed scientific 
applications. 

2. SOFTWARE ENGINEERING 
CHALLENGES 

To develop OODT, we needed to address several significant 
software engineering challenges, the bulk of which surfaced in 
light of the complex data management and distribution issues 
regularly faced within a distributed, large-scale government 
organization such as NASA. In this paper we will focus on nine 
key challenges: Complexity, Heterogeneity, Location 
Transparency, Autonomy, Dynamism, Scalability, Distribution, 
Decentralization, and Performance. 

Complexity – We envisioned OODT to be a large, multi-site, 
multi-user, complex system. At the software level, complexity 
ranged from understanding how to install, integrate, and manage 
the software remotely deployed at participating organizations, to 
understanding how to manage information such as access 
privileges and security credentials across both NASA and non-
NASA sites. There were also complexities at the software 
networking layer, including varying firewall capabilities at each 
institution, and data repositories that would periodically go offline 
and needed to be remotely restarted. Just understanding the 
varying types of data held at sites linked together via OODT was 
a significant task. Even sites within the same science domain 
(e.g., planetary science) describe similar data sets in decidedly 
different ways. Discerning in what ways these different data 
models were common and what attributes of data could be shared, 
done away with, or amended, was a huge challenge. Finally, the 
different interfaces to data, ranging from third-party, well-
engineered database management systems, to in-house data 
systems, ultimately to flat text file-based data was a particularly 
difficult challenge that we had to hurdle. 

Heterogeneity – In order to drive down the data management 
costs for science missions, the same OODT framework needed to 

span multiple science domains. The domains initially targeted 
were earth and planetary; this has subsequently been expanded to 
space, biomedical sciences, and the modeling and simulation 
communities. As such, the same core set of OODT software 
components, system designs, and implementation-level facilities 
had to work across widely varying science domains.  

The data management processes within the organizations that 
use OODT also added to its heterogeneity. For instance, OODT 
components needed to have interfaces with end users and support 
interactive sessions, but also with scientific instruments, which 
most likely were automatic and non-interactive. Scientific 
instruments could push data to certain components in OODT, 
while other OODT components would need to distribute data to 
users outside of OODT. End-users in some cases wanted to 
perform transformations on the data sent to them by OODT, and 
then to return the data back into OODT. The framework needed to 
support scenarios such as these seamlessly. 

Many other constraints also imposed the heterogeneity 
requirement on OODT. We can group these constraints into two 
major categories: 
• Organizational – As we briefly alluded above, discipline 

experts who wanted to disseminate their data via OODT 
really wanted the data to reside at their respective 
institutions. This constraint non-negotiable, and significantly 
impacted the space of technical solutions that we could 
investigate for OODT.  

• Technical – Since OODT had to federate many different data 
holdings and catalogs, we faced the constraints of linking 
them together and federating very different schemas and 
varying levels of sophistication in the data system interfaces 
(e.g., flat files, DBMS, web pages). Even those systems 
managing data through “higher level APIs” and middleware 
(e.g., RMI, CORBA, SOAP) proved non-trivial to integrate. 
The constraints enjoined by heterogeneity alone led us to 

realize that the OODT framework would need to draw heavily 
from multiple areas. Database systems, although used 
successfully for many years to manage large amounts of data at 
many sites, lacked the flexibility and interface capability to 
integrate data from other more crude APIs and storage systems 
(such as a PI-led web site). Databases also did not address the 
distribution of data and “ownership” issues. The advent of the 
web, although a promising means for providing openness and 
flexible interfaces to data, would not alone address the issues such 
as multi-institutional security and access. Furthermore, its 
request/reply nature would not easily handle other distribution 
scenarios, e.g., subscribe/notify. Research in the area of grid 
computing [1] has defined “out of the box” services for managing 
data systems (e.g., GridFTP), but which utilized alone would not 
address our other challenges (e.g., complexity). 

Location Transparency – Even though data could potentially 
be input into and output from the system from many 
geographically disparate and distributed sites, it should appear to 
the end-users as if the data flow occurred from a single location. 
This requirement was reinforced by the need to dynamically add 
data producers and consumers to a system supported by OODT, 
as will be further discussed below. 

Autonomy – When designing the OODT framework, we could 
not dictate how data providers should store, process, find, evolve, 
or retire their data. Instead, the framework needed to be 



transparent, allowing data providers to continue with their regular 
business processes, while managing and disseminating their 
information unobtrusively.  

Dynamism – It is expected that data providers for the most part 
will be stable organizations. However, there are cases in which 
new data producing (occasionally) and consuming (frequently) 
nodes will need to be brought on-line. Back-end data sources need 
to be pluggable, with little or no direct impact on the end-user of 
the OODT system, or on the organization that owns the data 
source. New end-users (or client hosts) should also be able to 
“come and go” without any disruption to the rest of the system. In 
the end, we realized this meant the whole infrastructure must be 
capable of some level of dynamism in order to meet these 
constraints. 

Scalability – OODT needed to manage large volumes of data, 
from at least hundreds of gigabytes at its inception to the current 
missions which will produce hundreds of terabytes. The 
framework needed to support at least dozens of institutional data 
providers (which themselves may have subordinate data system 
providers), dozens of user types (e.g., scientists, teachers, 
students, policy makers), thousands of users, hundreds of 
geographic sites, and thousands of different data types to manage 
and disseminate. 

Distribution – The framework should be able to handle the 
physical distribution of data across sites nationally and 
internationally, and ultimately the physical distribution of the 
system interfaces which provide the data. 

Decentralization – Each site may have its own data 
management processes, interfaces and data types, which were 
operating independently for some time. We needed to devise a 
way of coordinating and managing data between these data sites 
and providers without centralizing control of their systems, or 
information. In other words, the requirement was that the different 
sites retain their full autonomy, and that OODT adapts instead. 

Performance – Despite its scale and interaction with many 
organizations, data systems, and providers, OODT still needed to 
perform under stringent demands. Queries for information needed 
to be serviced quickly: in many cases response time under five 
seconds was used as a baseline. Additionally, OODT needed to be 
operational whenever any of the participating scientists wanted to 
locate, access, or process their data. 

3. BACKGROUND AND RELATED WORK 
Several large-scale software technologies that distribute, 

manage, and process information have been constructed over the 
past decade. Each of these technologies falls into one or more of 
four distinct areas: grid-computing, information integration, 
databases, and middleware. In this section, we briefly survey 
related projects in each of these areas and compare their foci and 
accomplishments to those of OODT. Additionally, since a major 
focal point of OODT is software architecture, we start out by 
providing some brief software architecture background and 
terminology to set the context. 

Traditionally, software architecture has referred to the 
abstraction of a software system into its fundamental building 
blocks: software components, their methods of interaction (or 
software connectors), and the governing rules that guide the 

composition of software components and software connectors 
(configurations) [2, 3]. Software architecture has been recognized 
in many ways to be the linchpin of the software development 
process. Ideally, the software requirements are reflected within 
the software system’s components and interactions; the 
components and interactions are captured within the system’s 
architecture; and the architecture is used to guide the design, 
implementation, and evolution of the system. Design guidelines 
that have been proven effective are often codified into 
architectural styles, while specific architectural solutions (e.g., 
concrete system structures, component types and interfaces, and 
interaction facilities) within specific domains are captured as 
reusable reference architectures. 

Grid computing deals with highly complex and distributed 
computational problems and large volume data management 
tasks. Massive parallel computation, distributed workflow, and 
petabyte scale data distribution are only a small cross-section of 
the grid’s capabilities. Grid projects are usually broken down into 
two areas. Computational grid systems are concerned with 
solving complex scientific problems involving supercomputing 
scale resources dispersed across various organizational 
boundaries. The representative computational grid system is the 
Globus Toolkit [4]. Globus is built on top of a web-services [5] 
substrate and provides resource management components, 
distributed workflow and security infrastructure. Other 
computational grid systems provide similar capabilities. For 
example, Alchemi [6] is a .NET-based grid technology that 
supports distributed job scheduling and an object-oriented grid 
development environment. JCGrid [7] is a light weight, Java-
based open source computational grid project whose goal is to 
support distributed job scheduling and the splitting of CPU-
intensive tasks across multiple machines.  

The other class of grid systems, Data grids, is involved in the 
management, processing, and distribution of large data volumes to 
disbursed and heterogeneous users, user types, and geographic 
locations. There are several major data grid projects. The LHC 
Computing Grid [8] is a system whose main goal is to provide a 
data management and processing infrastructure for the high 
energy physics community. The Earth System Grid [9] is geared 
towards supporting climate modeling research and distribution of 
climate data sets and metadata to the climate and weather 
scientific community.  

Two independently conducted studies [10, 11] have 
identified three key areas that the current grid implementations 
must address more effectively in order to promote data and 
software interoperability: (1) formality in grid requirements 
specification, (2) rigorous architectural description, and (3) 
interoperability between grid solutions. As we will discuss in this 
paper, our work to date on OODT has the potential to be a 
stepping stone in each of these areas: its explicit focus on 
architectures for data-intensive, “grid-like” systems naturally 
addresses the three concerns.  

There have been several well-known efforts within the AI 
and database communities that have delved into the topic of 
information integration, or the shared access, search, and retrieval 
of distributed, heterogeneous information resources. Within the 
past decade, there has been significant interest in building 
information mediators that can integrate information from 
multiple data sources. Mediators federate information by querying 
multiple data sources, and fusing back the gathered results. The 
representative systems using this approach include TSIMMS [12], 



Information Manifold [13], The Internet Softbot [14], InfoSleuth 
[15], Infomaster [16], DISCO [17], SIMS [18] and Ariadne  [19]. 
Each of these approaches focuses on fundamental algorithmic 
components of information integration: (1) formulating 
expressive, efficient query languages (such as Theseus [20]) that 
query many heterogeneous data stores; (2) accurately and reliably 
describing both global, and source data models (e.g. the Global-
as-view [12] and Local-as-view [21] approaches); (3) providing a 
means for global-to-source data model integration; and (4) 
improving queries and deciding which data sources to query (e.g. 
query reformulation [22] and query rewriting [22, 23]).  

However, these algorithmic techniques fail to address the 
software engineering side of information integration. For instance, 
existing literature fails to answer questions such as, which of the 
components in the different systems’ architectures are common; 
how can they be reused; which portions of their implementations 
are tied to (which) software components; which software 
connectors are the components using to interact; are the 
interaction mechanisms replaceable (e.g., can a client-server 
interaction in Ariadne become a peer-to-peer interaction); and so 
on. Additionally, none of the above related mediator systems have 
formalized a process for designing, implementing, deploying, and 
maintaining the software components belonging to each system.  

Several middleware technologies such as CORBA, 
Enterprise Java Beans [24], Java RMI [25], and more recently 
SOAP and Web services [5] have been suggested as “silver 
bullets” that address the problem of integrating and utilizing 
heterogeneous software computing and data resources. Each of 
these technologies provides three basic services: (1) an 

implementation and composition framework for software 
components, possibly written in different languages but 
conforming to a specific middleware interface; (2) a naming 
registry used to locate components; and (3) a set of basic services 
such as (un-)marshalling of data, concurrency, distribution and 
security.  

Although middleware is very useful “glue” that can connect 
software components written in different languages or deployed 
in heterogeneous environments, middleware technologies do not 
provide any “out of the box” services that deal with computing 
and data resource management across organizational boundaries 
and across computing environments at a national scale. These 
kinds of services usually have to be engineered into the 
middleware itself. We should note that in grid computing such 
services are explicitly called out and provided at a higher layer of 
abstraction. In fact, the combination of these higher-level grid 
services and an underlying middleware platform is typically 
referred to as a “grid technology” [11].  

4. OODT ARCHITECTURE 
OODT’s architecture is a reference architecture that is 

intended to be instantiated and tailored for use across science 
domains and projects. The reference architecture comprises 
several components and connectors.  A particular instance of this 
reference architecture, that of NASA’s planetary data system 
(PDS) project, is shown in Figure 1. OODT is installed on a given 
host inside a “sandbox”, and is aware of and interacts only with 
the designated external data sources outside its sandbox. OODT’s 
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Figure 1. The Planetary Data System (PDS) OODT Architecture Instantiation 



components are responsible for delivering data from 
heterogeneous data stores, identifying and locating data within the 
system, and ingesting and processing data into underlying data 
stores. The connectors are responsible for integrating OODT with 
heterogeneous data sources; providing reliable messaging to the 
software components; marshalling resource descriptions and 
transferring data between components; transactional 
communication between components; and security related issues 
such as identification, authorization, and authentication. In this 
section, we describe the guiding principles behind the reference 
architecture. We then describe each of the OODT reference 
components and connectors in detail. In Section 5, we describe 
specific instantiations of the reference architecture in the context 
of several projects that are using OODT. 

4.1 Guiding Principles 
The software engineering challenges discussed in Section 2 

motivated and framed the development of OODT. Conquering 
these challenges led us to a set of four guiding principles behind 
the OODT reference architecture.  

The first guiding principle is division of labor. Each 
capability provided by OODT (e.g., processing, ingestion, search, 
and retrieval of data, access to heterogeneous data, and so on) is 
carefully divided among separate, independent architectural 
components and connectors. As will be further detailed below, the 
principle is upheld through OODT’s rigorous separation of 
concerns, and modularity enforced by explicit interfaces. This 
principle addresses the complexity, heterogeneity, dynamism, and 
decentralization challenges. 

Closely related to the preceding principle is technology 
independence. This principle involves keeping up-to-date with the 
evolution of software technology (both in-house and third-party), 
while avoiding tying the OODT architecture to any specific 
implementation. By allowing us to select the technology most 
appropriate to a given task or specific need, this principle helps us 
to address the challenges of complexity, scalability, security, 
distribution, location transparency, performance, and dynamism.  
For instance, OODT’s initial reference implementation used 
CORBA as the substrate for its messaging layer connector. When 
the CORBA vendor decided to begin charging JPL significant 
license fees (thus violating NASA’s objective of producing a 
solution that would be free to its users), the principle of 
technology independence came into play. Because the OODT 
messaging layer connector supports a wrapper interface around 
the lower-level distribution technology, we were able to replace 
our initial CORBA-based connector with one using Java’s open 
source RMI middleware, and redeploy the new connector to the 
OODT user sites, within three person days.  

Another guiding principle of OODT is the distinguishing of 
metadata as a first-class citizen in the reference architecture, and 
separating metadata from data. The job of metadata (i.e., “data 
about data”) is to describe the data universe in which the system 
is operating. Since OODT is meant to be a technology that 
integrates diverse data sources, this data universe is highly 
heterogeneous and possibly dynamic. Metadata in OODT is 
meant to catalog information, allowing a user to locate and 
describe the actual data in which she is interested. On the other 
hand, the job of data in OODT is to describe physical or scientific 
phenomena; it is the ultimate end user product that an OODT 
system should deliver. This principle helps to address the 

challenges of heterogeneity, autonomy of data providers, and 
decentralization. 

Separating the data model from the software is another key 
principle behind the reference architecture. Akin to ontology/data-
driven systems, OODT components should not be tied to the data 
and metadata that they manipulate. Instead, the components 
should be flexible enough to understand many (meta-)data models 
used across different scientific domains, without reengineering or 
tailoring of the component implementations. This principle helps 
to address the challenges of complexity and heterogeneity. 

These four guiding principles are reified in a reference 
architecture comprising four pairs of component types and two 
classes of connectors organized in a canonical structure. One 
instantiation of the reference architecture reflecting the canonical 
structure is depicted in Figure 1.  Each OODT architectural 
element (component and connector) serves a specific purpose, 
with its functionality exported through a well-defined interface.  
This supports OODT’s constant evolution, allowing us to add, 
remove, and substitute, if necessary dynamically (i.e., at runtime), 
elements of a given type. It also allows us to introduce flexibility 
in the individual instances of the reference architecture while, at 
the same time, controlling the legal system configurations.  
Finally, the explicit connectors and well-defined component 
interfaces allow OODT in principle to integrate with a wide 
variety of third-party systems (e.g., [26]).  The outcome of the 
guiding principles (described above) and design decisions 
(detailed below) is an architecture that is “easy to build, hard to 
break”. 

4.2 OODT Components 
4.2.1 Product Server and Product Client 

The Product Server is used to retrieve data from 
heterogeneous data stores. The product server accepts a query 
structure that identifies a set of zero or more products which 
should be returned the issuer of the query. A product is a unit of 
data in OODT and represents anything that a user of the system is 
interested in retrieving: a JPEG image of Mars, an MS Word 
document, a zip file containing text file results of a cancer study, 
and so on. Product servers can be located at remote data sites, 
geographically and/or institutionally disparate from other OODT 
components. Alternatively, product servers can be centralized, 
located at a single site. The objective of the product server is to 
deliver data from otherwise heterogeneous data stores and 
systems. As long as a data store (or system) provides some kind 
of access interface to get its data, a product server can “wrap” 
those interfaces with the help of Handler connectors described in 
Section 4.3 below. 

The Product Client component communicates with a product 
server via the Messaging Layer connectors described in Section 
4.3. A product client resides at the end-user’s (e.g., scientist’s) 
site.  It must know the location of at least one product server, and 
the query structure that identifies the set of products that the user 
wants to retrieve. At the same time, it is completely insulated 
from any changes in the physical location or actual representation 
of the data; its only interface is to the product server(s).  Many 
product clients may communicate with the same product server, 
and many product servers can return data to the same product 
client. This adds flexibility to the architecture without introducing 
unwanted long-term dependencies: a product client can be added, 



removed, or replaced with another one that depends on different 
product servers, without any effect on the rest of the architecture. 

4.2.2 Profile Server and Profile Client 
The Profile Server manages resource description 

information, i.e., metadata, in a system built with OODT. 
Resource description information is divided into three main 
categories: 
• Housekeeping Information – Metadata such as ID, Last 

Modified Date, Last Revised By. This information is kept 
about the resource descriptions themselves and is used by the 
profile server to inventory and catalog resource descriptions. 
This is a fixed set of metadata. 

• Resource Information – This includes metadata such as Title, 
Author, Creator, Publisher, Resource Type, and Resource 
Location. This information is kept for all the data in the 
system, and is an extended version of the Dublin Core 
Metadata for describing electronic resources [27]. This is 
also a fixed set of metadata. 

• Domain-Specific Information – This includes metadata 
specific to a particular data domain. For instance, in a cancer 
research system this may include metadata such as Blood 
Specimen Type, Site ID, and Protocol/Study Description. 
This set of metadata is flexible and is expected to change. 

As with product servers, profile servers can be decentralized at 
multiple sites or centralized at a single site. The objective of the 
profile server is to deliver metadata that gives a user enough 
information to locate the actual data within OODT regardless of 
the underlying system’s exact configuration, and degrees of 
complexity and heterogeneity; the user then retrieves the data via 
one or more product servers. Because profile servers do not serve 
the actual data, they need not have a direct interface to the data 
that they describe. In addition to the complete separation of duties 
between profile and product servers, this ensures their location 
independence, allows their separate evolution, and minimizes the 
effects of component and/or network failures in an OODT system. 

Profile Client components communicate with profile servers 
over the messaging layer connectors. The client must know the 
location of the profile server, and must provide a query that 
identifies the metadata that a user is interested in retrieving. There 
can be many profile clients speaking with a single profile server, 
and many profile servers speaking with a single profile client.  
The architectural effects are analogous to those in the case of 
product clients and servers. 

4.2.3 Query Server and Query Client 
The Query Server component provides an integrated search 

and retrieval capability for the OODT reference architecture. 
Query servers interact with profile and product servers to retrieve 
metadata and data requested by system users. A query server is 
seeded with an initial set of references to profile servers. Upon 
receiving a query from a user, the query server passes it along to 
each profile server from its list, and collects the metadata 
returned. Part of this metadata is a resource location (recall 
Section 4.2.2) in the form of a URI [28]. A URI can be a link to a 
product server, to a web site with the actual data, or to some 
external data providing system. This directly supports 
heterogeneity, location transparency, and autonomy of data 
providers in OODT.  

Another novel aspect of OODT’s architecture is that if a 
profile server is unable to service the query, or if it believes that 

other profile servers it is aware of may contain relevant metadata, 
it will return the URIs of those profile servers; the query server 
may then forward the query to them. As a result, query servers are 
completely decoupled from product servers (and from any 
“exposed” external data sources), and are also decoupled from 
most of the profile servers. In turn, this lessens the complexity of 
implementing, integrating, and evolving query servers. Once the 
resource metadata is returned, the query server will either allow 
the user herself to use the supplied URIs to find the data in which 
she was interested (interactive mode), or it will retrieve, package, 
and deliver the data to the user (non-interactive mode). As with 
the product and profile servers, query servers can be centrally 
located at a single site, or they can be decentralized across 
multiple sites.   

Query Client components communicate with the query 
servers. The query client must provide a query server with a query 
that identifies the data in which the user is interested, and it must 
set a mode for the query server (interactive or non-interactive 
mode). The query client may know the location of the query 
server that it wants to contact, or it may rely on the messaging 
layer connector to route its queries to one or more query servers.   

4.2.4 Catalog and Archive Server and Client 
The Catalog and Archive Server (CAS) component in OODT 

is responsible for providing a common mechanism for ingestion 
of data into a data store, including any processing required as a 
result of ingestion. For instance, prior to the ingestion of a poor-
resolution image of Mars, the image may need to be refined and 
the resolution improved. CAS would handle this type of 
processing. Any data ingested into CAS must include associated 
metadata information so that the data can be cataloged for search 
and retrieval purposes. Upon ingestion, the data is sent to a data 
store for preservation, and the corresponding metadata is sent to 
the associated catalog. The data store and catalog need not be 
located on the same host; they may be located on remote sites 
provided there is an access mechanism to store and retrieve data 
from each. The goal of CAS is to streamline and standardize the 
process of adding data to an OODT-aware system.  Note that a 
system whose data stores were populated prior to its integration 
into OODT can still use CAS for its new data.  Since the CAS 
component populates data stores and catalogs with both data and 
metadata, specialized product and profile server components have 
been developed to serve data and metadata from the CAS backend 
data stores and catalogs more efficiently. Any older data can still 
be served with existing product and profile servers. 

The Archive Client component communicates with CAS. The 
archive client must know the location of the CAS component, and 
must provide it with data to ingest. Many archive clients can 
communicate with a single CAS component, and vice versa.  Both 
the archive client and CAS components are completely 
independent of the preceding three pairs of component types in 
the OODT reference architecture. 

4.3 OODT Connectors 
4.3.1 Handler Connectors 

Handler connectors are responsible for enabling the 
interaction between OODT’s components and third-party data 
stores.  A handler connector performs the transformation between 
an underlying (meta-)data store’s internal API for retrieving data 
and its (meta-)data format on the one hand, and the OODT system 



on the other. Each handler connector is typically developed for a 
class of data stores and metadata systems. For example, for a 
given DBMS such as Oracle, and a given internal representation 
schema for metadata, a generic Oracle handler connector is 
typically developed and then reused. Similarly, for a given 
filesystem scheme for storing data, a generic filesystem handler 
connector is developed and reused across like filesystem data 
stores.  

Each profile server and product server relies on one or more 
handler connectors. Profile servers use profile handlers, and 
product servers use query handlers. Handler connectors thereby 
completely insulate product and profile servers from the third-
party data stores.  Handlers also allow for different types of 
transformations on (meta-)data to be introduced dynamically 
without any effect on the rest of OODT components. For 
example, a product server that distributes Mars image data might 
be serviced by a query handler connector that returns high-
resolution (e.g., 10 GB) JPEG image files of the latest summit 
climbed by a Mars rover; if the system ends up experiencing 
performance problems, another handler may be (temporarily) 
added to return lower-resolution (e.g., 1 MB) JPEG image files of 
the same scenario. Likewise, a profile server may have two 
profile handler connectors, one that returns image-quality 
metadata (e.g., resolution and bits/pixel) and another that returns 
instrument metadata about Mars rover images (e.g., instrument 
name or image creation date). 

4.3.2 Messaging Layer Connector 
The Messaging Layer connector is responsible for 

marshalling data and metadata between components in an OODT 
system. The messaging layer must keep track of the locations of 
the components, what types of components reside in which 
locations, and if components are still running or not. Additionally, 
the messaging layer is responsible for taking care of any needed 
security mechanisms such as authentication against an LDAP 
directory service, or authorization of a user to perform certain 
role-based actions. 

The messaging layer in OODT provides synchronous 
interaction among the components, and some delivery guarantees 
on messages transferred between the software components. 
Typically in any large-scale data system, the asynchronous mode 
of interaction is not encouraged because partial data transfers are 
of no use to users such as scientists who need to make analysis on 
entire data sets. 

The messaging layer supports communication between any 
number of connected OODT software components. In addition, 
the messaging layer natively supports connections to other 
messaging layer connectors as well.  This provides us with the 
ability to extend and adapt an OODT system’s architecture, as 
well as easily tailor the architecture for any specific interaction 
needs (e.g., by adding data encryption and/or compression 
capabilities to the connector). 

5. EXPERIENCE AND CASE STUDIES 
The OODT framework has been used both within and 

outside NASA. JPL, NASA’s Ames Research Center, the 
National Institutes of Health (NIH), the National Cancer Institute 
(NCI), several research universities, and U.S. Federally Funded 
Research and Development Centers (FFRDCs) are all using 
OODT in some form or fashion. OODT is also available for 
download through a large open-source software distributor [29]. 

OODT components are found in planetary science, earth science, 
biomedical, and clinical research projects. In this section, we 
discuss our experience with OODT in several representative 
projects within these scientific areas. We compare and contrast 
how the projects were handled before and after OODT. We sketch 
some of the domain-specific technical challenges we encountered 
and identify how OODT helped to solve them. 

To begin using OODT, a user designs a deployment 
architecture from one or more of the reference OODT 
components (e.g., product and profile servers), and the reference 
OODT connectors. The user must determine if any existing 
handler connectors can be reused, or if specialized handler 
connectors need to be developed. Once all the components are 
ready, the user has two options for deploying her architecture to 
the target hosts: (1) the user may translate her design into a 
specialized OODT deployment descriptor XML file, which can 
then be used to start each program on the target host(s); or (2) the 
user can deploy her OODT architecture using a remote server 
control component, adding components, and connectors via a 
graphical user interface. The GUI allows the user to send 
component and connector code to the target hosts, to start, shut-
down, and restart the components and connectors, and to monitor 
their health during execution. 

5.1 Planetary Data System 
One of the flagship deployments of OODT has been for 

NASA’s Planetary Data System (PDS) [30]. PDS consists of 
seven “discipline nodes” and an engineering and management 
node. Each node resides at a different U.S. university or 
government agency, and is managed autonomously.  

For many years PDS distributed its data and metadata on 
physical media, primarily CD-ROM. Each CD-ROM was 
formatted a according to a “home-grown” directory layout 
structure called an archive volume, which later was turned into a 
PDS standard. PDS metadata was constructed using a common, 
well-structured set of 1200 metadata elements, such as Target 
Name and Instrument Type, that were identified from the onset of 
the PDS project by planetary scientists. Beginning in the late 
1990s the advent of the WWW and the increasing data volumes of 
missions led NASA managers to impose a new paradigm for 
distributing data to the users of the PDS: data and metadata were 
now to be distributed electronically, via a single, unified web 
portal. The web portal and accompanying infrastructure to 
distribute PDS data and metadata was built in 2001 using OODT 
in the manner depicted in Figure 1. 

We faced several technical challenges deploying OODT to 
PDS. PDS data and metadata were highly distributed, spanning all 
seven of the scientific discipline nodes across the country. 
Although the entire data volume across PDS at the time was 
around 7 terabytes, it was estimated that the volume would grow 
to 10 terabytes by 2004. Consequently, the system needed to be 
scalable and respond to large growth spurts caused by new data 
producing missions. The flexibility and modularity of the OODT 
product and profile server components were particularly useful in 
this regard. Using a product and/or profile server, each new data 
producing system in the PDS could be dynamically “plugged in” 
to the existing PDS infrastructure that we constructed, without 
disturbing existing components and processes.  

We also faced the problem of heterogeneity. Almost every 
node within PDS had a different operating system, ranging from 
Linux, to Windows, to Solaris, to Mac OS X.  Each node 
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Figure 2. The Early Detection Research Network (EDRN) OODT Architecture Instantiation 

maintained its own local catalog system. Although each node in 
PDS had different file system implementations dictated by their 
OS, each node stored their data and metadata according to the 
archive volume structure. Because of this, we were able to write a 
single, reusable PDS Query Handler which could serve back 
products from a PDS archive volume structure located on a file 
system. Plugging into each node’s catalog system proved to be a 
significant challenge. For nearly all of the nodes, specialized 
profile handler connectors were constructed to interface with the 
underlying catalog systems, which ranged from static text files 
called PDS label files to dynamic web site inventory systems 
constructed using Java Server Pages. Because each of the catalogs 
tagged PDS data using the common set of 1200 elements, we 
were able to share much of the code base among the profile 
handler connectors, ultimately only changing the portion of the 
code that made the particular JSP page call, or read the selected 
set of metadata from the label file. The entire code base of the 
PDS including all the domain specific handler connectors is only 
slightly over 15 KSLOC, illustrating the high degree of 
reusability provided by the OODT framework. 

5.2 Early Detection Research Network 
OODT is also supporting the National Cancer Institute’s 

(NCI) Early Detection Research Network (EDRN). EDRN is a 
distributed research program that unites researchers from over 
thirty institutions across the United States. Tens of thousands of 
scientists participate in the EDRN. Each institution is focused on 
the discovery of cancer biomarkers as indicators for disease [31]. 

A critical need for the EDRN is an electronic infrastructure to 
support discovery and validation of these markers.  

In 2001 we worked with the EDRN program to develop the 
first component of their electronic biomarker infrastructure called 
the EDRN Resource Network Exchange (ERNE). The (partial) 
corresponding architecture is depicted in Figure 2. One of the 
major goals of ERNE was to provide real-time access to bio-
specimen information across the institutions of the EDRN. Bio-
specimen information typically consisted of gigabytes of 
specimen images, and location and contact metadata for obtaining 
the specimen from its origin study institution. The previous 
method of obtaining bio-specimen information was very human-
intensive: it involved phone calls and some forms of electronic 
communication such as email. Specimen information was not 
searchable across institutions participating in the EDRN. The bio-
specimen catalogs were largely out-of-date, and out-of-synch with 
current holdings at each participating institution.  

One of the initial technical challenges we faced with EDRN 
was scale. The EDRN was over three times as large as the PDS. 
Because of this we chose to target ten institutions initially, rather 
than the entire set of thirty one. Again, OODT’s modularity and 
scalability came into play as we could phase deployment at each 
deployment institution. As we instantiated new product, profile, 
query, and archive servers at each institution, we could do so 
without interrupting any existing OODT infrastructure already 
deployed.  

Another challenge that we encountered was dealing with 
each participating site’s Institutional Review Board (IRB). An 
IRB is required to review and ensure compliance of projects with 



federal laws related to working with data from research projects 
involving human subjects. To satisfy the IRB, any OODT 
components deployed at an EDRN site had to provide an adequate 
security capability in order to get approval to share the data 
externally from an institution. OODT’s separation of data and 
metadata explicitly allowed us to satisfy this requirement. We 
designed ERNE so that each institution could remain in control of 
their specimen holding data by instantiating product server 
components at each site, rather than distributing the information 
across ERNE which would have violated the IRB agreements.  

Another significant challenge we faced in developing ERNE 
was lack of a consistent metadata model for each ERNE site. We 
were forced to develop a common specimen metadata model and 
then to create specific mappings to link each local site to the 
common model. OODT aided us once again in this endeavor as 
the common mappings we developed were easily codified into a 
query handler connector, and reused across each ERNE site.  

The entire code base of ERNE, including all its specialized 
handler connectors is only slightly over 5.3 KSLOC, highlighting 
the high degree of reusability of the shared framework code base 
and the handler code base. 

 

5.3 Science Processing Systems 
OODT has also been deployed in several science processing 

system missions both, operational and under development. Due to 
space limitations, we can only briefly summarize each of the 
OODT deployments in these systems.  

SeaWinds, a NASA-funded earth science instrument flying 
on the Japanese ADEOS-II spacecraft, used the OODT CAS 
component as a workflow and processing component for its 
Processing and Analysis Center (SeaPAC). SeaWinds produced 
several gigabytes of data during its six year mission. CAS was 
used to control the execution and data flow of mission-specific 
data processor components, which calibrated and created derived 
data products from raw instrument data, and archived those 
products for distribution into the data store managed by CAS. A 
major challenge we faced during the development of SeaPAC was 
that  the processor components were developed by a group 
outside of the SeaWinds project. We had to provide a mechanism 
for integrating their source code into the OODT SeaPAC 
framework. OODT’s separation of concerns allowed us to address 
this issue with relative ease: once the data processors were 
finished, we were able wrap and tailor them internally within 
CAS, without disturbing the existing SeaPaC infrastructure. 

The success of the CAS within SeaWinds led to its reuse on 
several different missions. Another earth science mission called 
QuikSCAT retrofitted and replaced some of their existing 
processing components with CAS, using the SeaWinds experience 
as an example. The Orbiting Carbon Observatory (OCO) mission 
that will fly in 2009, and that is currently under development, is 
also utilizing CAS to ingest and process existing FTS CO2 
spectrometer data from earth-based instruments. The James Web 
Telescope (JWT) is using the CAS for to implement its workflow 
and processing capabilities for astrophysics data and metadata. 
Each of these science processing systems will face similar 
technical challenges, including separation of concerns between 
the actual processing framework and the developers writing the 
processor code, the volume of data that must be handled by the 
processing system (OCO is projected to produce over 150 
terabytes), and the flexibility and tailorability of the workflow 

needed to process the data. We believe that OODT is uniquely 
positioned to address these difficult challenges. 

5.4 Computer Modeling Simulation and 
Visualization 

OODT has also been deployed to aid the Computer 
Modeling Simulation and Visualization (CMSV) community at 
JPL, by linking together several institutional model repositories 
across the organizations within the lab, and creating a web portal 
interface to query the integrated model repositories. We 
developed specialized profile server components that locate and 
link to different model resources across JPL, such as power 
subsystem models of the Mars Exploration Rovers (MER), CAD-
drawing models of different spacecraft assembly parts, and 
systems architecture models for engineering and design of 
spacecraft. Each of these different model types lived in separate 
independent repositories across JPL. For instance, the CAD 
models were stored in a commercial product called TeamCenter 
Enterprise [32], while the power and systems architecture models 
were stored in a commercial product called Xerox Docushare 
[33].  

To integrate these model repositories for CMSV, we had to 
derive a common set of metadata across the wide spectrum of 
different model types that existed at JPL. OODT’s separation of 
data from metadata allowed us to rapidly instantiate our common 
metadata model once we developed it, by constructing specialized 
profile handler connectors that mapped each repository’s local 
model to the common model. Reusability levels were high across 
the connectors, resulting in an extremely small code base of 2.57 
KSLOC.  

Another challenge in light of this mapping activity was 
interfacing with the APIs of the underlying model repositories. In 
the above two cases, the APIs were commercial products, and 
poorly documented. In some cases, such as the Docushare 
repository, the APIs did not fully conform to their stated 
specifications. The division of labor amongst OODT components 
came into play on this task. It allowed us to focus on deploying 
the rest of the OODT supporting infrastructure, such as the web 
portal, and the profile handler connectors, and not getting stalled 
waiting for the support teams from each of the commercial 
vendors to debug our API problems. Once the OODT CMSV 
infrastructure was deployed, the modeling and simulation 
community at JPL immediately began adopting it and sharing 
their models across the lab. During the past year, the system has 
received around 40,000 hits on the web portal, and over 9,000 
queries for models. 

6. CONCLUSIONS 
When the need arose at NASA seven years ago for a data 

distribution and management solution that satisfied the formidable 
requirements outlined in this paper, it was not clear to us initially 
how to approach the problem.  On the surface, several applicable 
solutions already existed (middleware, information integration 
systems, and the emerging grid technologies).  Adopting one of 
them seemed to be a preferable path because it would have saved 
us precious time.  However, upon closer inspection we realized 
that each of these options could be instructive, but that none of 
them solved the problem we were facing (and that even some of 
these technologies themselves were facing). 

The observation that directly inspired OODT was that we 
were dealing with software engineering challenges, and that those 



challenges naturally required a software engineering solution.  
OODT is a large, complex, dynamic system, distributed across 
many sites, servicing many different users, and classes of users, 
with large amounts of heterogeneous data, possibly spanning 
multiple domains. Software engineering research and practice 
both suggest that success in developing such a system will be 
determined to a large extent by the system’s software 
architecture.  It therefore became imperative that we rely on our 
experience within the domain of data-intensive systems (e.g., 
JPL’s PDS project), as well as our study of related research and 
practice, in order to develop an architecture for OODT that will 
address the challenges we discussed in Section 2.  Once the 
architecture was designed and evaluated, OODT’s initial 
implementation and its subsequent adaptations followed naturally. 

As OODT’s developers we are heartened, but as software 
engineering researchers and practitioners disappointed, that 
OODT still appears to be the only system of its kind. The 
intersection of middleware, information management, and grid 
computing is rapidly growing, yet it is still characterized by one-
off solutions targeted at very specific problems in specific 
domains. Unfortunately, these solutions are sometimes clever by 
accident and more frequently little more than “hacks”.  We 
believe that OODT’s approach is more appropriate, more 
effective, more broadly applicable, and certainly more helpful to 
developers of future systems in this area.  We consider OODT’s 
demonstrated ability to evolve and its applicability in a growing 
number of science domains to be a testament to its explicit, 
carefully crafted software architecture. 
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