Evapotranspiration from Natural Vegetation in the Central Valley of California

CWEMF 2014 Annual Meeting

Folsom, CA February 25, 2014

Daniel Howes, Ph.D., P.E.

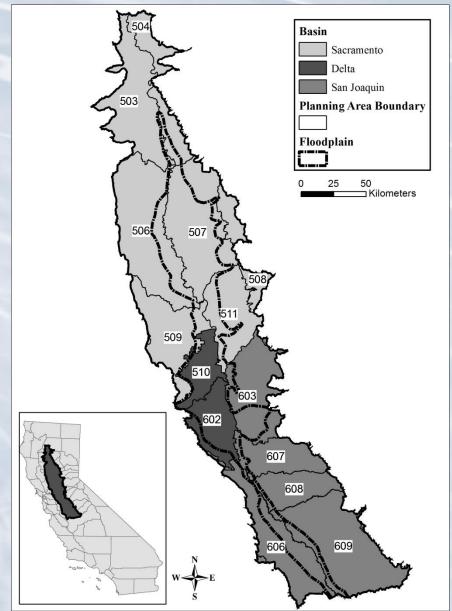
Assistant Professor and Senior Engineer djhowes@calpoly.edu

moving water in new directions **Irrigation Training and Research Center (ITRC)** California Polytechnic State University San Luis Obispo, California <u>www.itrc.org</u> (805) 756-2434 Phyllis Fox, Ph.D.

Environmental Consultant

Paul Hutton, Ph.D., P.E.

Senior Engineer Metropolitan Water District


Introduction

- Evapotranspiration estimates for natural vegetation are important for:
 - Restoration activities
 - Hydrologic evaluations/modeling
 - Historical water consumption
 - Potential future water consumption
- Concurrent evaluation of pre-developed natural flow out of the Delta
 - Requires ET estimates of vegetation in predeveloped CA (area that flows to the Delta)

Central Valley Floor

Planning Areas (CDWR, 2005)

ITRC 2014

Introduction

 Direct measurement of plant evapotranspiration is challenging and there is a need to estimate ET in different time periods and locations

 Measurements in one location are not directly transferable to another (climate, management, soils, etc.)

Issues

- Agriculture has standardized on the use of reference evapotranspiration/crop coefficient methodology to achieve transferability
 - (standard equations for reference crop evapotranspiration: ASCE 2005 Modified Penman-Monteith)
- Same standardization is not found for estimating ET of natural or native vegetation
- Researchers base the reference on:
 - Evaporation pans
 - Priestley-Taylor
 - Blaney-Criddle
 - Jensen-Haise
 - One of the Penman-Monteith versions

Issues Continued

- Quality of the reference data, lack of standardization, and issues with transferability limits the direct use of research measurements by other users
- Quality E pan data for example can be very limited
- With the increase in weather station networks and standards for site maintenance, following the agriculture standards seems like a logical step forward for natural vegetation
 - Spatial ETo estimates (e.g. SpatialCIMIS)
- This will promote further work and use of existing research for modeling and computation of natural vegetation ET

ETc for Ag Crops

- Standard Reference Crops
 - Alfalfa or tall crop (ETr)
 - Grass or short crop (ETo) (California)
- Special reference evapotranspiration weather station networks are proliferating
 - CIMIS
 - Agrimet
 - CoAgMet and others

Objectives of This Study

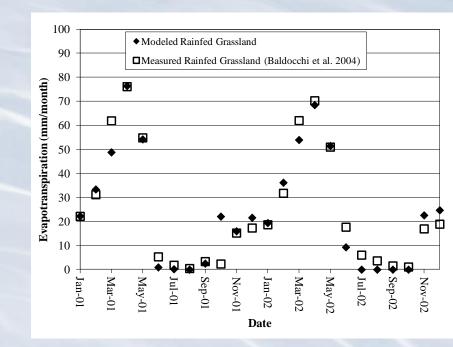
- Estimate the evapotranspiration from natural vegetation in California's Central Valley using:
 - Estimated grass reference based vegetation coefficients (Kv's) for non-water stressed vegetation based on past research
 - For vegetation relying on rainfall, a daily soil water balance with the dual crop coefficient method
 - Daily and monthly ETo and precip for each planning area from 1922-2009 (CDWR – Orang et al. 2013)

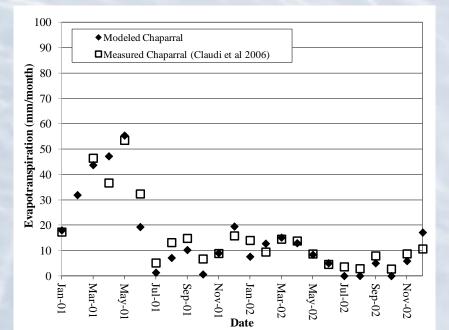
Methodology – Kv approach

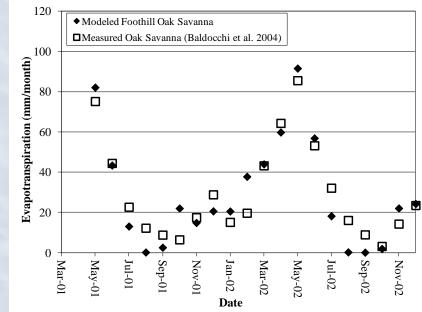
- Reviewed over 120 references on evapotranspiration from a variety of natural vegetation types
- Limited results to data:
 - presented monthly or more frequently
 - measured within surrounding vegetation using a standard/verified approach
 - most were from 1950 to present
 - focused on studies in the western U.S. (arid/semi-arid environments)

Methodology - Kv (cont.)

- Computed vegetation coefficients on a monthly basis $Kv = \frac{ETc}{ETo}$
- ETo = grass reference evapotranspiration
- In some cases, ETo weather stations were not available in the area where the study was conducted
- Used a calibrated Hargreaves Equation to compute ETo for those cases


Methodology – Soil Water Balance


- Vegetation relying on rainfall
- ETv depends on rainfall and is low in summer
- Soil water balance using the FAO 56 dual crop coefficient approach
- Model calibrated based on measured data from other studies
 - Rainfed grasses and foothill oak savannas (Baldocchi et al. 2004)
 - Chaparral (Claudio et al. 2006)



SWB Calibration

- Adjusting
 - Basal Kv (canopy)
 - Development periodSMD at onset of stress

Results – Kv values

- Comprehensive tables in future paper
 - Large stand wetlands (5 studies)
 - Seasonal wetlands (2 studies)
 - Small stand wetlands (5 studies)
 - Large stand riparian forest (4 studies)
 - Smaller stand riparian forest (1 study)
 - Perennial grasses (5 studies)
 - Saltbush (4 studies)
 - Shallow open water (3 studies)

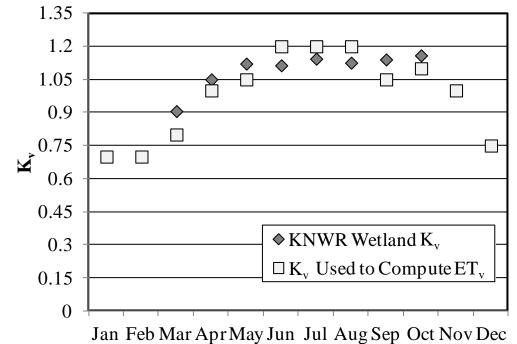
		Long-Term				17				Long-Term				DÆ	
Category	ID Vegetation	Winter Freeze	Table Depth	Location	Measurement Method	ET _o Method	Source	Catagory	ID Vegetation	Winter Freeze	Table Depth	Location	Measurement Method	ET _o Method	Source
Category	1 Cattails	No	Standing	Fort Drum,	tank within	1	(Mao et al. 2002)		27 Shallow Open	No		Fort Drum,	tank	1	(Mao et al. 2002)
			0	FL	vegetation		(Water			FL			. , ,
Ŧ	2 Cattails	No	"	Southern FL	**	1	(Abtew and	Open	28 Shallow Open	No		Delta Region,	tank	5	(Matthew 1931)
Large Stand	3 Tules and	No	"	Twitchell	surface renewal	1	Obeysekera 1995)* (Drexler et al. 2008)	Water	Water 29 Shallow Open	No		CA Lake Elsinore	, water balance	5	(Young 1947)
Wetland	Cattails	110		Island, CA	surface renewar	1	(Diexier et al. 2000)		Water	110		CA	, water carantee	U	(10011g 1) ())
	4 Tules/Bulrush	No	"	Bonsall, Ca	tank within	5	(Muckel and Blaney		30 Oak-Grass	No	No	Near Iona,	eddy covariance	2	(Baldocchi et al.
	5 Cottoila	Vac	"	Logon UT	vegetation	1	1945) (Allen 1008)		Savanna	Ne	NT/A	CA		2	2004) (Claudia at al
-	5 Cattails 6 Tules, Cattails,	Yes Yes	Standing	Logan, UT Upper	Bowen ratio eddy covariance	1	(Allen 1998) (Stannard 2013)		31 Chaparral - Old Stand	No	N/A	Springs, CA	eddy covariance	2	(Claudio et al. 2006)
Seasonal	Wocus Lilly	105	to 0.8 m	Klamath	eddy covariance	1		Rainfed Vegetation	32 Chaparral -	No	N/A	1 0	eddy covariance	2	(Ichii et al. 2009)
Large Stand				NWR, OR				vegetation	Young Stand			Springs, CA		_	
Wetland	7 Tules/Bulrush	Yes	Standing to 0.8 m	"	eddy covariance	1	"		33 Chaparral	Yes	N/A	Sierra Ancha Forest, AZ	tank within vegetation	5	(Rich 1951)
	8 Cattails	No	Standing	King Island,	tank within	5	(Young and Blaney					,			
			-	CA	vegetation		1942)								
Small	9 Tules/Bulrush	No	**	دد	tank within	5	دد								
Stand	10 Tules/Bulrush	No	"	Victorville,	vegetation tank within	5	"								
Wetland	To Tures, Durubh			CA	vegetation	Ũ									
	11 Cattails	103	"	Logan, UT	Bowen Ratio	1	(Allen 1998)								
	12 Tules/Bulrush	Yes	" TT-1		Bowen Ratio	1	" (V								
Large	13 Willow	No	High	Santa Ana, CA	tank within vegetation	4	(Young and Blaney 1942)								
	14 Cottonwood	Yes	Variable	Middle Rio	SEB/METRIC	1	(Allen et al. 2005)								
Riparian				Grande, NM			"								
Forest	15 R.Olive 16 Willow	Yes Yes	Variable Variable	"	SEB/METRIC SEB/METRIC	1	~~								
Smaller	17 Reed, Willow,	Yes	0.9 m	Central City,	Bowen ratio	1	(Irmak et al. 2013)								
Stand	Cottonwood			NE NE			(
Riparian															
Forest (508m by															
120m)															
	18 Native Pasture	Yes	High	Alturas, CA	tank within	5	(MacGillivray								
Large	19 Native Pasture	Yes	Uich	Shasta	vegetation	5	1975)								
Stand	17 Ivalive Fasture	1 03	High	County, CA		5									
Pasture with High	20 Irrigated Pasture	Yes	0-0.6m	Carson	eddy covariance	5	(Maurer et al. 2006)								
Water	21 Irrigated Pasture	Yes	0.6-1.5m	Valley, NV	Bowen ratio	5	"								
Table	22 Meadow Pasture		0.3-1.2m	Upper Green	tank within	1	(Pochop and								
				River, WY	vegetation		Burman 1987)								1000
	23 Saltbush	Minor	.28 m	Owens Vallary CA	stomatal	1	(Steinwand et al.								
	24 Saltbush	Minor	0.4-0.7m	Valley, CA Owens	conductance eddy covariance	2	2001) (Duell 1990)								
Large Stand	2 i buitousii	Winor	0.1 0.711	Valley, CA	eddy covariance	-	(Buen 1990)								1.00
Saltbush	25 Saltbush	No	1.6m	Yuma, AZ	tank within	4	(McDonald and								
	26 Saltbush	No	1.1m	Yuma, AZ	vegetation tank within	4	Hughes 1968)								
	20 Sattousii	INU	1.1111	i unia, AZ	vegetation	+									
	27 Shallow Open	No		Fort Drum,	tank	1	(Mao et al. 2002)								
10. To 10.		-								T					
											1/11	\sim			

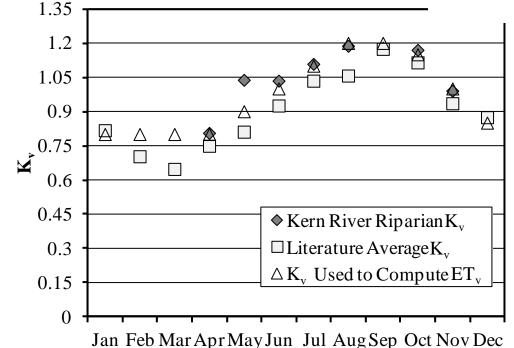


Monthly Kv Values

	Shallow	High Water						
	Open	Table		Large	Small			
	Water	Perennial		Stand	Stand	Seasonal		Vernal
Month	Aquatic	Grass	Riparian	Wetland	Wetland	Wetland	Saltbush	Pool
January	0.65	0.55	0.80	0.70	1.00	0.70	0.30	0.65
February	0.70	0.55	0.80	0.70	1.10	0.70	0.30	0.70
March	0.75	0.60	0.80	0.80	1.50	0.80	0.30	0.80
April	0.80	0.95	0.80	1.00	1.50	1.00	0.35	1.00
May	1.05	1.00	0.90	1.05	1.60	1.05	0.45	1.05
June	1.05	1.05	1.00	1.20	1.70	1.10	0.50	0.85
July	1.05	1.10	1.10	1.20	1.90	1.10	0.60	0.50
August	1.05	1.15	1.20	1.20	1.60	1.15	0.55	0.15
September	1.05	1.10	1.20	1.05	1.50	0.75	0.45	0.10
October	1.00	1.00	1.15	1.10	1.20	0.80	0.35	0.10
November	0.80	0.85	1.00	1.00	1.15	0.80	0.40	0.25
December	0.60	0.85	0.85	0.75	1.00	0.75	0.35	0.60

Kv Check – Remote Sensing of ET


ITRC – METRIC Procedure


- Large riparian forest east of Lake Isabella
- Wetland in Kern Wildlife Refuge
- Part of separate projects previously evaluated

Kv Check

Remote Sensing SEB compared to Kv used in this study

Kv from LandSAT 5 processed for riparian and wetlands in Kern County, CA independent investigation by author

Good Agreement

Rainfed 88-year average Kv

	Rainfed	Foothill	Valley Oak	
Month	Grassland	Hardwoods	Savanna	Chaparral
January	0.78	0.80	0.80	0.55
February	0.72	0.77	0.77	0.61
March	0.64	0.69	0.69	0.54
April	0.58	0.61	0.62	0.40
May	0.35	0.52	0.54	0.22
June	0.06	0.20	0.40	0.03
July	0.00	0.01	0.40	0.01
August	0.00	0.01	0.40	0.01
September	0.03	0.03	0.40	0.03
October	0.16	0.15	0.41	0.14
November	0.47	0.46	0.55	0.40
December	0.73	0.71	0.71	0.57

Long-Term Average ETv by Planning Area

1922-2009 Average Annual Evapotranspiration mm/year

1922-2009 Average Annual Evapotranspiration, mm/ year												
	Large	Large	Small									Open
Planning	Stand	Stand	Stand	Seasonal	Vernal	Perennial	Salt-	Rainfed		Foothill	Valley	Water
Area	Riparian	Wetland	Wetland	Wetland	Pools	Grasses	bush	Grass	Chaparral	Oak	Oak	Evap.
503	1,341	1,413	2,043	1,288	755	1,305	602	391	295	451	685	1,274
504	1,325	1,395	2,017	1,271	741	1,289	596	340	288	402	640	1,258
506	1,387	1,461	2,113	1,331	779	1,350	623	324	250	398	672	1,317
507	1,430	1,506	2,179	1,373	803	1,392	643	352	269	427	702	1,358
509	1,396	1,469	2,125	1,339	781	1,359	627	328	247	402	679	1,325
510	1,404	1,478	2,138	1,347	787	1,368	631	312	232	386	673	1,333
511	1,471	1,549	2,241	1,412	820	1,433	662	348	264	426	717	1,397
601	1,166	1,227	1,774	1,118	657	1,135	523	274	190	323	560	1,106
602	1,246	1,312	1,898	1,196	705	1,213	559	272	193	333	590	1,183
603	1,464	1,543	2,233	1,407	821	1,427	659	337	255	415	710	1,391
606	1,392	1,466	2,121	1,337	786	1,356	626	240	174	312	625	1,322
607	1,438	1,516	2,195	1,383	812	1,402	647	293	216	368	673	1,367
608	1,482	1,564	2,264	1,427	841	1,446	667	289	215	366	686	1,410
609	1,558	1,644	2,380	1,499	879	1,521	702	290	220	372	715	1,482
Average	1,393	1,467	2,123	1,338	783	1,357	626	314	236	384	666	1,323
								ITF	RC m	© Cal F	Poly ITF	RC 2014

moving water in new directions

Conclusions

- For non-water stressed vegetation, Kv values showed good agreement between independent studies
- A list of grass reference based Kv values have been generated from past research for use in estimating vegetation in arid/semi arid climates
- For vegetation relying on rainfall, a soil water balance model was used to estimate ET
 - Calibration of the model based on measured values

Work Supported by:

San Luis-Delta Mendota Water Authority and State Water Contractors

Thank You More Information visit www.itrc.org

