## Application of SANMAN: A San Joaquin River Salinity Management Spreadsheet Model

CWEMF Annual Meeting March 2005

### **Presentation Content**

- Model Description
- Study Objective & Assumptions
- Study Results & Conclusions

SJR Salinity Management Model (SANMAN)

### **Model Description**

The purpose of the San Joaquin River Salinity Management Model (SANMAN) is to provide reconnaissance-level decision support in the development of a <u>San Joaquin River Salinity</u> <u>Management Plan</u> by:

Identifying coordinated management strategies that meet the Vernalis salinity objective

Estimating water costs of strategies

SJR Salinity Management Model (SANMAN)

## **SANMAN Version 2.0 Schematic**



SJR Salinity Management Model (SANMAN)

### **Presentation Content**

- Model Description
- Study Objective & Assumptions
- Study Results & Conclusions

SJR Salinity Management Model (SANMAN)

### **Study Objective**

- Explore the potential benefits of redistributing winter and early spring drainage releases from managed wetlands on the west side of the San Joaquin River basin
  - Assist in meeting Vernalis salinity objective
  - Reduce burden on New Melones Reservoir

### **Study Assumptions**

Consider an isolated action and an action coordinated with the SJRWQMG Draft Preferred Alternative (Scenario HP-20)

- Partial implementation (20%) of SJRIP
- "High priority" re-circulation
- Relocation of Stanislaus R. dissolved oxygen compliance location
- Strategic water transfers

### Study Assumptions (cont'd)

- March 1 April 14 drainage is retained for release April 1 May 15 when:
  - New Melones dilution flow is required to meet March Vernalis salinity objective
  - San Joaquin River assimilative capacity is available

### Study Assumptions (cont'd)

 March drainage is pre-released in February when:

- New Melones dilution flow is required to meet March Vernalis salinity objective
- San Joaquin River assimilative capacity is available and/or New Melones water is available for dilution

# Study Assumptions (cont'd)

- **Redistribution Priority for March Drainage:** 
  - April 1-14

- April 15-30
- May 1-15
- February

### **Redistribution Priority for April 1-14 Drainage:**

- April 15-30
- May 1-15

SJR Salinity Management Model (SANMAN)

### **Presentation Content**

- Model Description
- Study Objective & Assumptions
- Study Results & Conclusions

SJR Salinity Management Model (SANMAN)

# Redistribution of March Drainage: Refuge Drainage Management



#### SJR Salinity Management Model (SANMAN)

## Redistribution of March Drainage: Refuge Mgt + Draft PA (HP-20)



#### SJR Salinity Management Model (SANMAN)

# Redistribution of April 1-14 Drainage: Refuge Drainage Management



#### SJR Salinity Management Model (SANMAN)

# Redistribution of April 1-14 Drainage: Refuge Mgt + Draft PA (HP-20)



#### SJR Salinity Management Model (SANMAN)

### **Vernalis Salinity Objective**

Refuge drainage management reduces
Vernalis salinity objective violations from
13 to 5 over the 73-year simulation period

When coordinated with the SJRWQMG Draft PA, refuge drainage management always meets the Vernalis salinity objective over the 73-year simulation period without strategic water transfers

# New Melones Releases: Refuge Drainage Management



#### SJR Salinity Management Model (SANMAN)

## New Melones Releases: SJRWQMG Draft PA (HP-20)



#### SJR Salinity Management Model (SANMAN)

# New Melones Releases: Refuge Mgt + Draft PA (HP-20)



#### SJR Salinity Management Model (SANMAN)

### Conclusions

- Isolated action results in the following redistribution of March refuge drainage:
  - 7% in below normal years
  - 29% in dry years
  - 63% in critical years

Coordinated action results in a similar redistribution of March drainage

SJR Salinity Management Model (SANMAN)

# Conclusions (cont'd)

- Isolated action results in the following redistribution of April 1-14 refuge drainage:
  - 17% in below normal years
  - 24% in dry years
  - 27% in critical years

Coordinated action results in less redistribution of April 1-14 drainage

## Conclusions (cont'd)

- Isolated action reduces salinity violations from 13 to 5 over 73-year period
- Coordinated action eliminates need for strategic water transfers
- Isolated action provides 10 TAF critical year savings in New Melones. Savings is slightly higher (12 TAF) with coordinated action.

### Potential VAMP savings not quantified

SJR Salinity Management Model (SANMAN)

### **Extra Slides**

SJR Salinity Management Model (SANMAN)

### Model Description (cont'd)

- Microsoft EXCEL
- Post-analysis of CALSIM Sequential Hydrology and CVP-SWP Operations
  - March 1922 thru September 1994
  - April May: Half month time step

Prescribes Action Levels (e.g. re-circulation volume) Necessary to Meet Vernalis Salinity Objective Given Pre-defined Action Priorities

# Model Description (cont'd) Salinity Management Actions

- Coordinated Tributary Operations
- Drainage Reduction
- Drainage Management
- New Melones Releases
- DMC Re-circulation & Delta Actions

### Purchases

Decreasing Action Priority

SJR Salinity Management Model (SANMAN)