Denic mod gnitamital Wolf revix elbbilly & blo

Paul Hutton Metropolitan Water District

Motivation

Hydraulic Forces

Model Development

Model Validation

Conclusions & Next Steps

2008 CWEMF Annual Meeting Pacific Grove, CA

Acknowledgements

Allison Dvorak Tracy Hinojosa Pete Smith Chuching Wang Min Yu

Motivation

DWR & USGS OMR Flow Models Q_{OMR} (cfs) = A * $Q_{vernalis}$ + B * $Q_{exports}$ + C

Water Year Type	Water Supply Impacts OMR > -750 cfs (TAF per year)			Water Supply Impacts OMR > -5000 cfs (TAF per year)		
	DWR Model	USGS Model	Difference	DWR Model	USGS Model	Difference
73-Yr Average	1300	1770	470	320	490	170
Wet	1110	1780	670	250	550	300
Above Normal	1520	2270	750	420	720	300
Below Normal	1570	2150	580	380	610	230
Dry	1510	1720	210	410	400	-10
Critical	760	800	40	180	150	-30

benidmo2 gnitamita3 wolf-nevis elbbill & bl0

IN IL CONTRACTOR

Motivation

Hydraulic Forces

Model Development

Model Validation

Conclusions & Next Steps

Hydraulic Forces

Sacramento River

Reverse OMR Flows

Old River

Clifton Court Forebay

Jones Pumping Plant

San Joaquin Stockton

Sacramento

Middle River

Hydraulic Forces

Sacramento

Middle

River

San Joaquin River

Stockton

Sacramento River **Positive OMR Flows**

Old River

Clifton Court Forebay Jones Pumping Plant

Hydraulic Forces

Old R. Gage Old R. Gage Old R. Gage

CCWD Old R. Intake

Clifton Court Forebay South Delta Net Channel Depletions

South Delta Temporary Barriers

Jones Pumping Plant

San Joaquin R. @ Vernalis

benidmo2 gnitsmitz3 Wolf nevis elbbill & bl0

1 Not Contract of

Motivation

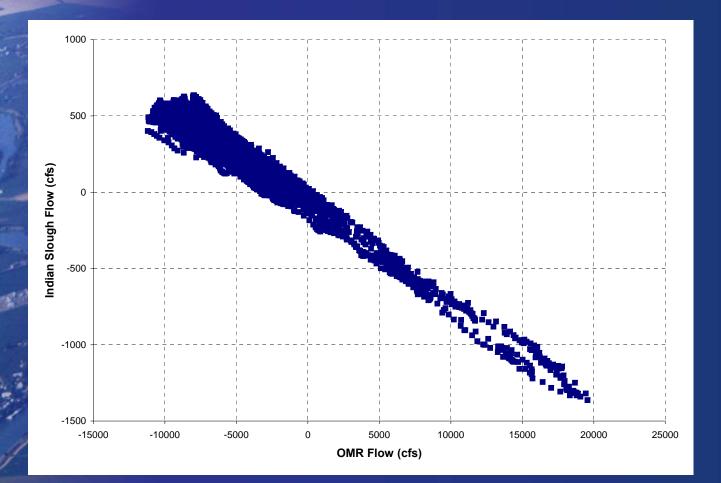
Hydraulic Forces

Model Development

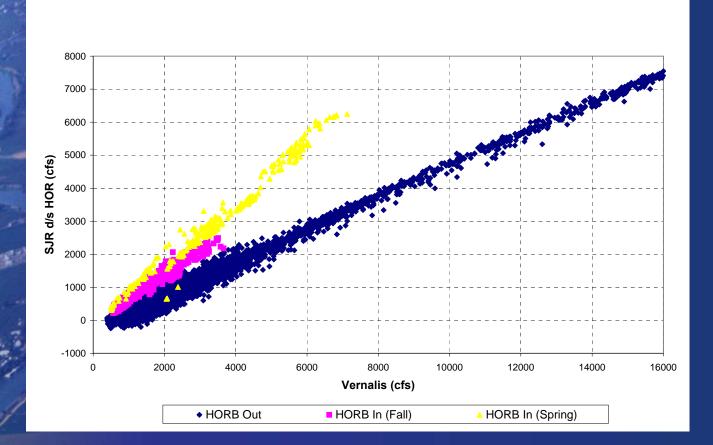
Model Validation

Conclusions & Next Steps

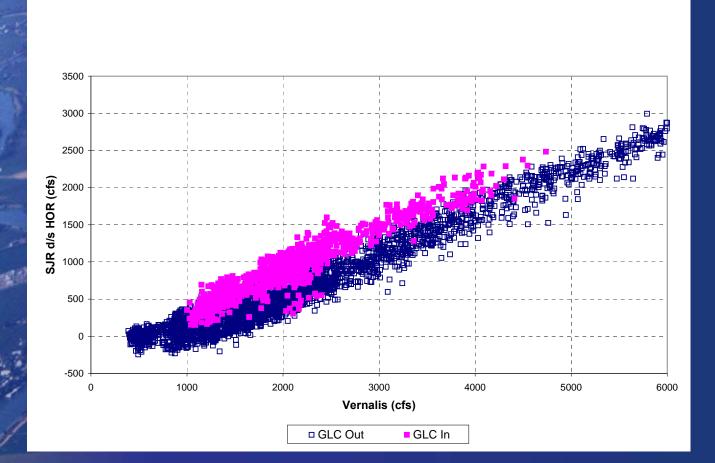
Model Development South Delta Water Balance

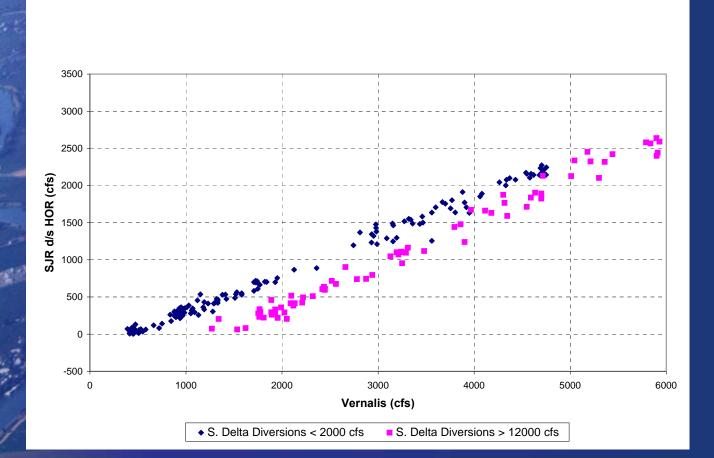

OMR = San Joaquin River @ Vernalis
+ Indian Slough @ Old River
- San Joaquin River d/s HOR
- Clifton Court Forebay diversions
- Jones Pumping Plant diversions

- CCWD Old River diversions
- South Delta net channel depletions


± Change in storage

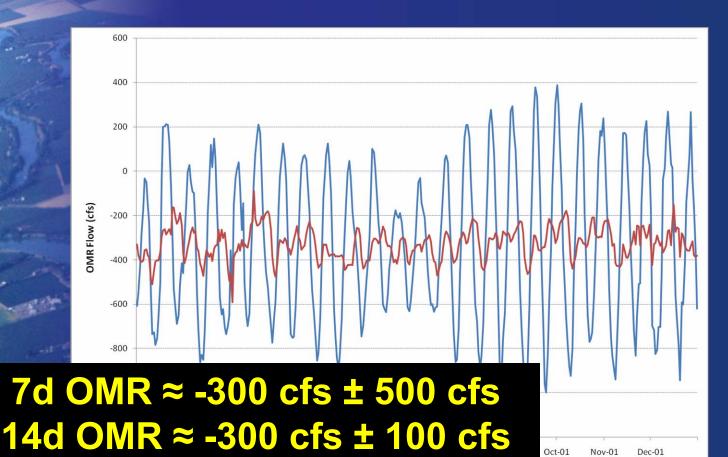
South Delta Diversions


Model Development Indian Slough @ Old River

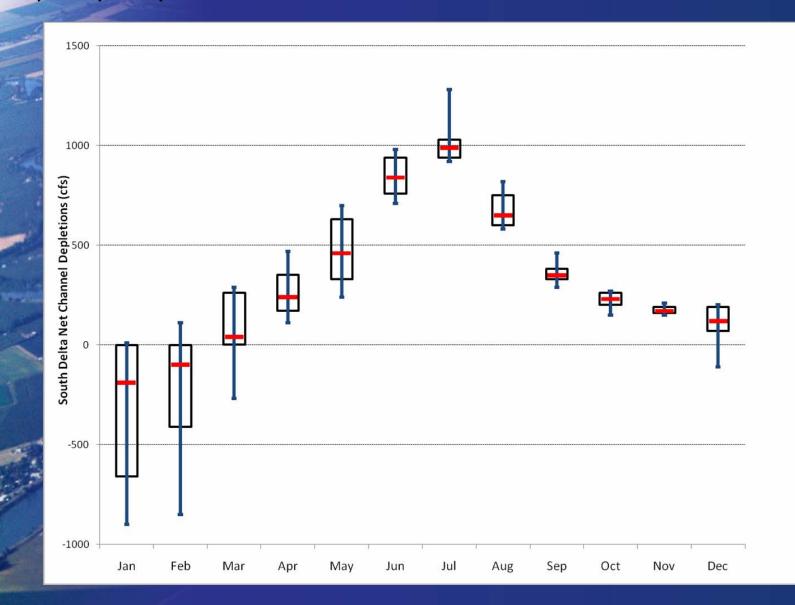

Model Development San Joaquin River d/s HOR

Model Development San Joaquin River d/s HOR (HORB Out)

Model Development San Joaquin River d/s HOR (HORB & GLC Out)


Model Development OMR Flow Model Constants

Q_{OMR} (cfs) = A * Q_{vernalis} + B * Q_{south delta diversions} + C


HORB	GLC Barrier	Vernalis (cfs)	Α	В	С
Out	Out	< 16,000	0.462	-0.911	120
Out	Out	16,000- 28,000	0.681	-0.940	-2982
Out	Out	> 28,000	0.634	-0.940	-1654
Out	In	All	0.405	-0.940	183
In (Spring)	Out/In	All	0.079	-0.940	73
In (Fall)	Out/In	All	0.259	-0.940	-9

Tidal Effects

Vernalis = 1000 cfs; South Delta Diversions = 1000 cfs; No Barriers Historical Delta Inflows for Calendar Year 2001

South Delta Net Channel Depletions 10th, 25th, 50th, 75th & 90th Percentile DICU Model Estimates: 1990-2006

benidmo2 gnitemits2 Wolf nevin elleleil & blo

Motivation

Hydraulic Forces

Model Development

Model Validation

Conclusions & Next Steps

Model Validation Deviations by Month with 14d Observed Data

Month	#	Averag	Average Deviation (cfs)			
Data Points		e OMR Flow (cfs)	DWR Model	USGS Model	MWD Model	DSM2
Jan	469	-6040	310	710	250	240
Feb	452	-4560	370	1010	410	380
Mar	485	-2400	520	880	360	290
Apr	479	-1510	910	780	350	300
Мау	515	240	1660	760	380	360
Jun	452	-2210	1240	760	340	340
Jul	458	-6010	1240	1060	390	420
Aug	457	-7580	950	920	390	400
Sep	462	-7680	780	680	390	400
Oct	465	-6170	780	610	450	400
Nov	416	-5440	630	310	380	360
Dec	465	-5150	410	600	360	350
All	5575	-4490	820	760	370	350

benidmo2 gnitemits2 Wolf nevin elleleil & blo

INTERNA IN

Motivation

Hydraulic Forces

Model Development

Model Validation

Conclusions & Next Steps

Conclusions Model Development & Application

Performance

- superior validation to observed data
- more robust sensitivity to key hydrologic variables

Limitations

- tidal influences are ignored
- net channel depletion estimates are highly uncertain
 Recommendations
 - recalibrate with wider range of operations data

Conclusions Potential Control Measures

Forecasting

- tidal effects
- south Delta net channel depletions
- **Barrier operations**
 - Grant Line Canal appears to be the only temporary barrier that has a significant impact on OMR flow. Additional studies should be conducted to confirm this finding.
 - Water savings may result from delaying installation of the GLC temporary barrier. But will delayed installation require export curtailments to meet south Delta water levels?

Upstream flow augmentation

- Measures that increase San Joaquin River flows at Vernalis would be effective in controlling OMR flow.
- Such measures would be even more effective if the Paradise Cut weir was modified to divert more water into the south Delta.