Development of the 3D Natural Delta Model

Stephen Andrews, Ph.D. John DeGeorge, Ph.D., P.E. Ed Gross, Ph.D. Stacie Grinbergs, P.E.

Modeling Strategy

- Objective: characterize salinity regime of Delta prior to geomorphic and hydrologic modifications of the gold rush era
- 1) Model salinity of the Delta in its current state
 - Create grid for current Delta
 - Collect boundary conditions, calibrate model
 - Demonstrate model can predict current conditions
- 2) Model salinity of the historic Delta
 - Create grid for historic Delta using UC Davis DEM based on SFEI historic channel locations and depths
 - Calibrate model based on SFEI historic observations
- 3) Simulate salinity regimes and compare
 - Data visualizations: vertical transects
 - Metrics: X2
 - Reconstructed natural hydrology

Model Computational Engine Information

- UnTRIM developed/maintained by V. Casulli (Univ. of Trento, Italy)
- 3D hydrodynamic and scalar transport model

- Uses unstructured orthogonal grid ——
- Computationally efficient and stable
 - Multi-threaded, Fortran engine
- Accounts for relevant physical properties
- Tested/verified in peer reviewed journals
 - Casulli and Cheng (1992)
 - Casulli and Stelling (2010)
- Applied previously to successfully model estuarine circulation

Subgrid

• Accounts for changes in bathymetry as scales smaller than grid resolution

- Computationally efficient
- Produces improved estimates of cell volume and channel conveyance
- Model variables only available at grid scale
- Care must be taken when creating grid to prevent aliasing

Subgrid Example in HEC-RAS2D (RAS2D engine developed by RMA under contract to USACE, Hydrologic Engineering Center)

Contemporary Delta Model

- Developed in collaboration with UC Davis
- Target moderate grid resolution for timely runs

Inflow LocationExport Location

DICU Location Stage Boundary

- River inflows
- Major exports
- Ocean tidal boundary
- Delta Island Consumptive Use
- Evaporation and precip.
 in bays
- Surface wind stress
- Bed friction
- Generic length scale turbulence closure scheme used in vertical (Warner et al. 2005)

Subgrid Masked Velocities

Salinity Field Characterization

Transect Location 17-Apr-94 13:00 Stage [m] 994 Apr 28 19 Apr 18 1994 Depth [m] 20 25 Salinity [psu] Point San Pablo Martinez [E 15 Pepth 20 25 Speed [m/s] [m 15 20 25 Log Vertical Diffusivity [m2/s] Transect Distance [km]

Historic Grid Construction

- Flow-aligned quadrilateral elements follow levee crests in main channels
- Triangular elements fill tidal plains
- Low-order channels captured implicitly using subgrid
- ~125,000 elements

Historic DEM (UCD) \rightarrow Historic Subgrid

Historical Model Calibration Data (SFEI)

Field	Value	
OBJECTID	1	August .
Shape	Point	BUT BE MAD
Class	Tidal range in channel	NEVRAL Y
TidalRange	3.5 ft (spring tide)	X # 38Y 2
ChannelDepth	<null></null>	- KAT 192
TidalInundationDepth	<null></null>	A SECOND
Source	406 ND 1859, Samuel R. Thornton, 208	Charles (Charles)
Date	1859	~ X 115 X
Quote	[q23] How high do the spring tides rise in the M river at Bensons ferry? [a23] I would suppose about 3 ½ feet.	14 V36 2
Quote_summary	spring tide 3.5 ft in M river	
LocationPrecision	Benson's Ferry	1 AN
Location_precision_code	1	

- Tidal range
- Depth of marsh plain inundation
- Channel depth

Field	Value
OBJECTID	35
Shape	Point
Class	Depth of marsh plain inundation
TidalRange	<null></null>
ChannelDepth	<null></null>
TidalInundationDepth	6 inches MHHW (banks)
Source	Hall 1861, S&O Reports Correspondence. Beaumont, Duncan. District No. 22
Date	1861
Quote	The average difference between high and low tide is 6.12 feet and the average overflow at high tide is 0.492 f
Quote_summary	tide range 6.12ft, overflow at high tide ~6in on banks, circumference crosses 3 beaver cuts (4-7ft deep), 3 slo
LocationPrecision	Bouldin Island, District No. 22
Location_precision_code	3

Ongoing Work

- In Phase I of the iterative process of calibrating the historic Delta model
- Comparison of natural Delta with estimated natural hydrology
 - Stratification
 - X2 location
 - Tidal range

Thank You

- Development and calibration of the historic model grid was funded by the Metropolitan Water District of Southern California, under the direction of Paul Hutton
- UC Davis collaborator: Bill Fleenor, Watershed Sciences
- SFEI collaborator: Robin Grossinger

