Comparing Salinity and Hydrodynamics in the Historical and Contemporary Deltas

Stephen Andrews, Ph.D.

Ed Gross, Ph.D.

John DeGeorge, Ph.D., P.E.

Stacie Grinbergs, P.E.

Outline

- Project Goals
- Model information
- Historical Delta model
 - Development
 - Calibration
- Contemporary Delta model
 - Calibration
- Comparison simulation info
- Results
 - Salinity
 - Tidal prism
 - Tidal velocities
 - Tracer dispersion
- Conclusions

Project Goals

- Characterize hydrodynamic and salinity regime of Delta prior to geomorphic and hydrologic modifications that began in the 1850s
 - Levee construction, loss of tidal marsh
 - Channel straightening, deepening
 - Upstream dams
 - Flooded islands
 - Bathymetric changes (hydraulic mining sed.)
 - Others...
- Comparison to Current Delta
 - X2 relationship to Net Delta Outflow
 - Tidal prism
 - Flood vs. ebb dominance
 - Advective and dispersive flux

Extent of Nistorical tidal marsh

Changes in channel geometry From Whipple et al. (2012)

Project Team

 Metropolitan Water District of Southern California
 [Funding agency]

[Funding agency]

- Paul Hutton, Project Manager
- San Francisco Estuary Institute [Historical Delta Configuration, Bathymetry]
 - Sam Safran
 - Robin Grossinger
 - Julie Beagle
- Hydrology Team
 - Tariq Kadir (DWR)
 - Guobiao Huang (DWR)
 - Andy Draper (MWH)
 - J. Phyllis Fox
 - Dan Howes (CSU, San Luis Obispo)

Resource Management Associates
 [Hydrodynamics]

- Steve Andrews
- Ed Gross
- John DeGeorge
- Stacie Grinbergs
- University of California, Davis Center for Watershed Studies [DEM creation, Hydrodynamics]
 - Andy Bell
 - Bill Fleenor
 - Alison Whipple
 - Steve Micko
 - Fabian Bombardelli
 - Mui Lay
 - Amber Manfree

Historical Delta Modeling Overview

WATER RESOURCES ENGINEERING

Hydrodynamic Model Information

- UnTRIM Computational Engine
 - 3D hydrodynamic and scalar transport model
 - Utilizes unstructured orthogonal grid
 - Computationally efficient and stable
 - Developed and maintained by V. Casulli (Univ. of Trento, Italy)
 - Casulli and Cheng (1992), Casulli and Walters (2000), Casulli and Stelling (2010)
- z0 bed friction parameterization
- Generalized length scale vertical turbulence closure scheme (Warner, 2005)
 - Implemented by Bundesanstalt f
 ür Wasserbau (BAW)
- Constant wind stress, evaporation, and precipitation by region
- Target moderate grid resolution with subgrid
 - Produces improved estimates of cell volume and channel conveyance

Model geometry with contoured subgrid bathymetry

Historical Delta Mesh Topology

- Flow-aligned quadrilateral elements follow levee crests in main channels
- Triangular elements fill tidal plains
- Low-order channels captured with subgrid
- Janet grid generation software (Lippert & Sellerhoff, 2006)

Historical Delta Model Calibration Bay-Delta Science Conference presentation, October 2014 • • Tidal range in channels 1.35 Depth and frequency of marsh plain inundation ٠ 1.20 1.05 0.45 0.40 0.90 0.35 0.30 0.60 0.25 0.20 Maxir 0.45 0.15 0.30 0.10 0.15 0.05 *Historical observations pre-1850 sparse, sometimes questionable

Contemporary Delta Model

- Developed in collaboration with UC Davis
- Target moderate grid resolution for timely runs
- River inflows
- Major exports, gates, barriers
- Ocean tidal boundary
- Delta Island Consumptive Use
- Evaporation and precip. in bays
- Surface wind stress
- Bed friction
- Generic length scale turbulence closure scheme used in vertical (Warner et al. 2005)

KMA MANAGEMENT ASSOCIATES

WATER RESOURCES ENGINEERING

Comparison Runs: Boundary Conditions

	Contemporary	Historical
Inflows	USGS, DWR Observed	C2VSim
Exports	DWR	None
Delta Use	DWR DICU	C2VSim Inflows - Outflow
Ocean Water Level	NOAA Point Reyes Station	Point Reyes – 1ft to account for sea level rise
Meteorological Inputs	NOAA, CIMIS Observed	Same
Hydraulic Structure Operations	USBR, DWR	None
Initial Salinity Condition	USGS Polaris	Same

Net Delta Outflow

RMA RESOURCE MANAGEMENT ASSOCIATES

In-Delta Water Use Processes

- Contemporary Delta withdrawals, return flows, seepage, evaporation
- Historical Delta evapotranspiration from marsh, ponds

RMA RESOURCES MANAGEMENT ASSOCIATES

Net Delta Outflow – X2 Regression

- Monismith, et al. 2002; Gross, et al. 2010
- Salt balance equation: $Q S = -K_x A dS/dx$
 - Q = Net Delta Outflow
 - S = tidally-averaged salinity
 - A = cross-sectional area
 - dS/dx = longitudinal salinity gradient
 - $K_x =$ longitudinal dispersion coefficient
- Hansen and Rattray derivation of K_x , algebra
 - $X2 = \beta Q^{1/3}$
- Generalize: $X2 = \beta Q^{\gamma}$
- Take in account effect of preceding flow with autoregressive term
- X2(t) = α X2(t-1) + (1+ α) β Q $^{\gamma}$
- Gamma parameter indicates sensitivity of X2 to NDO

REMAR RESOURCE MANAGEMENT ASSOCIATES

Contemporary Flows with Contemporary and Historical Regression Fits

Tidal Prism

- Volume of water that enters/exits the Delta between mean low tide and mean high tide
- Determined by analysis of flow record at Martinez
- Historical Delta -> greater marsh area to flood
- Contemporary Delta -> wider and deeper channels
- Model Results:
 - Historical Delta: 205 x 10⁶ m³ (166,000 acre-feet)
 - Contemporary Delta: 200 x 10⁶ m³ (162,000 acre-feet)
- Slight (2.5%) increase for historical Delta

Flood versus Ebb Tide Dominance

- Flood tide dominance: flood tide shorter in duration, higher tidal velocities
- Ebb tide dominance: ebb tide shorter, with higher tidal velocities
- Implications for transport of sediment, material, aquatic organisms Cache at Ryer, Contemporary Delta

Marsh Causes Shifts To Flood Dominance?

• Hypothesis: marsh draining elongates ebb period, shifts velocities towards flood dominance (however, we saw the opposite)

RCES

ENGINEERING

Conclusions and Future Work

- Reached calibration with adequate representation of the tidal range and inundation characteristics of the historical Delta and Suisun Bay/Marsh
- Performed salinity regression comparison
 - Very similar X2 dependence on Delta outflow for moderate flows
 - Next: analysis of longer time period with low-flow in the historical Delta
- Small differences in tidal prism with historical Delta, even with large increases in marsh area
 - Seen in other RMA studies (BDCP, levee break simulations)
- Counter-intuitive tidal velocity results currently being analyzed
- Collaborations for future investigations?

Thanks!

- Metropolitan Water District of Southern California [Funding agency]
 - Paul Hutton, Project Manager
- San Francisco Estuary Institute [Historical Delta Configuration, Bathymetry]
 - Sam Safran
 - Robin Grossinger
 - Julie Beagle
- Hydrology Team
 - Tariq Kadir
 - Guobiao Huang
 - Andy Draper (MWH)
 - J. Phyllis Fox
 - Dan Howes (CSU, San Luis Obispo)

- DWR and UCD are independent collaborators
- University of California, Davis Center for Watershed Studies [DEM creation, Hydrodynamics]
 - Andy Bell
 - Bill Fleenor
 - Alison Whipple
 - Steve Micko
 - Fabian Bombardelli
 - Mui Lay
 - Amber Manfree

Referenced Works

- Cappiella, K., Malzone, C., Smith, R., and B. Jaffe. 1999. Sedimentation and Bathymetry Changes in Suisun Bay: 1867-1990. U. S. Geological Survey Open-File Report 99-563, <u>http://pubs.usgs.gov/of/1999/0563/</u>.
- Casulli, V. and R.T. Cheng. 1992. Semi-implicit finite difference methods for three-dimensional shallow water flow. Int. J. Numer. Meth. Fluids 15: 629-648.
- Casulli, V. and R.A. Walters. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids 32: 331-348.
- Casulli, V. and G.S. Stelling. 2010. Semi-implicit subgrid modelling of three-dimensional free-surface flows. Int. J. Numer. Meth. Fluids. DOI: 10.1002/fld.2361.
- Gross, Edward S, MacWilliams, Michael L, & Kimmerer, Wim J. (2010). Three-dimensional modeling of tidal hydrodynamics in the San Francisco Estuary. San Francisco Estuary and Watershed Science, 7(2).
- Lippert, C. and F. Sellerhoff. 2006. Efficient generation of orthogonal unstructured grids. 7th International Conference on Hydroscience and Engineering (ICHE-2006), Sep. 10 – Sep. 13, Philadelphia, USA.
- Monismith, S., W. Kimmerer, J.R. Burau, and M.T. Stacey. 2002. Structure and flow-induced variability of the subtidal salinity field in Northern San Francisco Bay. J. Phys. Oceanogr., 32, 3003–3019.
- Warner, J.C. 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling 8:81-113.
- Whipple, A.A., Grossinger, R.M., Rankin, D., Stanford, B., and R.A. Askevold. 2012. Sacramento-San Joaquin Delta Historical Ecology Investigation: Exploring Pattern and Process. Prepared for the California Department of Fish and Game and Ecosystem Restoration Program. A Report of SFEI-ASC's Historical Ecology Program, Publication #672, San Francisco Estuary Institute-Aquatic Science Center, Richmond, CA.

Contact Information

Steve Andrews - steve@rmanet.com

John DeGeorge - dfdegeorge@rmanet.com

Resource Management Associates 4171 Suisun Valley Rd, Suite J Fairfield, CA 94534

707-864-2950

