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1 INTRODUCTION  

The Delta smelt (Hypomesus transpacificus) is an endangered species endemic to the 

Sacramento-San Joaquin estuary of California, with low recorded abundance in the last 

decade by the Interagency Ecological Program. A 2008 Biological Opinion by the U.S. 

Fish and Wildlife Service recommended changes in the manner in which flows and 

freshwater exports through the Delta are managed to address the decline in population of 

this species (http://www.fws.gov/sfbaydelta/ocap/). Delta smelt abundance is related to 

various water quality parameters, including temperature, conductivity, and turbidity. 

Possibly due to linkages between Delta smelt migration and turbidity levels (Armor and 

Sommer, 2006), California Department of Water Resources scientists have observed that 

there is an increase in Delta smelt salvage at the water export facilities when the turbidity 

exceeds a level of approximately 12 nepheelometric turbidity units (NTU). 

To support implementation of the 2008 Biological Opinion, there is a need to understand 

and predict fate and movement of turbidity in the Delta. Besides greater collection of 

turbidity data that has been initiated since 2009, turbidity modeling is also needed. Two 

such approaches include mechanistic modeling using the Delta Simulation Model (DSM-

2) (Liu and Sandhu, 2011) and using the Resource Management Associates RMA-2 

model (RMA, 2008). These models compute turbidity within the Delta channels given 

inputs of flow and turbidity at all relevant boundaries. However, both modeling 

approaches require considerable user expertise and computational time to run, hence 

limiting their accessibility. There is an additional need for a tool that can be used to 

provide rapid predictions of turbidity in two situations: for near-term operations planning, 

where there is a need to estimate turbidity expected in the following days under a variety 

of possible operating scenarios, and, for long-term water supply planning, where there is 

a need to estimate turbidity-related export constraints in water operations models (e.g. 

CalSim) run over multi-year periods. Under these conditions, running a fully mechanistic 

model of the system is generally not computationally feasible. 

To fit this need for generating rapid predictions, Artificial Neural Networks (ANNs) were 

proposed as an alternative mathematical approach to conventional statistical methods and 
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mechanistic models. ANNs use simple elements (neurons) and connections between 

elements using a range of functional forms to represent complex real-world data. The 

ANN methodology was inspired by biological nervous systems (Demuth and Beale, 

2002) and has found broad application in the prediction and control of complex systems. 

An ANN can be trained to perform a particular function through adjusting values that 

form the connections between elements (weights). In this context, the term training is 

analogous to parameter estimation used in statistical and mechanistic models. ANNs offer 

several advantages over alternative statistical methods: 1) they can include non-linear 

functions and represent a broad range of functional forms, and 2) they can be set up to 

approximate relatively complex problems, such as the hydrodynamics in the Delta. In 

recent years, ANNs have also become popular in the water resources field: recent 

literature reviews identified more than 300 peer-reviewed applications of ANNs to water 

resources problems worldwide (Maier and Dandy, 2000; Maier et al., 2010). Although 

the majority of applications of ANNs to water resources are related to flow, some 

applications have focused on water quality (e.g., salinity, nitrate, sediment; Maier et al. 

2010).  

The ANN approach has been used broadly in the Sacramento–San Joaquin Delta in 

predicting salinity at various interior locations by the California Department of Water 

Resources (DWR) (Finch and Sandhu, 1995; Sandhu et al., 1999) and impacts of sea 

level rise (Seneviratne et al., 2008). The delta salinity ANN model has been integrated 

into the state-wide operations model CalSim (Wilbur and Munevar, 2001). The salinity 

ANN is trained on DSM2 results that may represent historical or future conditions, 

through taking into account individual flow components and operational parameters as 

model inputs. In this sense, the ANN model has the advantage as previous approaches are 

based on historical measurements alone and cannot account for potential future changes 

in the Delta hydrology. The current version of DWR’s ANN model predicts flow-salinity 

relationships at nine locations in the Delta including Emmaton, Jersey Point, Old River at 

Rock Slough, Collinsville, Chipps Island, Antioch, Central Valley Project intake (Jones 

pumping plant), Clifton Court Forebay intake (Banks pumping plant), and Los Vaqueros 

intake at Old River. This version of the ANN model also calculates the position of X2 in 

the estuary (location corresponding to a salinity of 2 parts per thousand at the bottom of 

the water column). 

The goal of this study was to explore the potential of developing a Delta ANN turbidity 

model, representing historical or future potential conditions within the Delta. Because the 

underlying turbidity data through the Delta are only available for a relatively brief time 

window (from 2009 to present), this study used model-calculated turbidity values for the 

training of the ANN. As it is well known that ANNs (and most data-driven empirical 

approaches) perform best at interpolating within conditions that have been used for 

training and perform poorly at extrapolating beyond the training range, a key objective of 

this work was to generate a wide range of model inputs to create a broad range of data for 

training. DSM2 was run with multiple turbidity boundary inputs, with a 20-year 
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hydrologic time series, and was used to create the dataset that was be used for 

training/validating the ANN. The present analysis, and resulting model, termed DASM-T 

for Delta ANN Simulation Model-Turbidity, is termed a Phase 1 study because the goal 

was to demonstrate whether ANNs could indeed successfully replicate turbidity in the 

Delta, with possible extensions of the ANN approach based on the results of this study. 
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2 APPROACH  

2.1 OVERALL APPROACH 

The overall approach used in developing the Delta ANN turbidity model was to train the 

model based on a set of boundary scenarios formulated to represent historical or potential 

future conditions in the Delta, with model inputs generated by the DSM2 model, 

described below. The DSM2 model was selected to simulate flow and turbidity 

relationships within the Delta, rather than using the observed data directly. This is 

because DSM2 is able to mechanistically simulate the response in turbidity at different 

Delta locations, in response to changes in individual flow components and operation 

parameters that could potentially occur in the future. This feature may not be captured by 

using observed turbidity data available today, which span a relatively short time frame. 

Given the constraint with the availability of observed data, the DSM2 model outputs are 

considered the next best option for developing a long-term data set that is able to account 

for future changes in Delta flow and operation under a range of hydrologic conditions.  

2.2 DSM2 MODEL  

The DSM2 model is a one-dimensional hydrodynamic and water quality model that 

dynamically simulates hydrodynamics, water quality and particle tracking in a network of 

riverine or estuarine channels with Delta (DWR, 2002). DSM2 calculates flow, stage, 

velocity, mass transport processes for conservative and non-conservative constituents, 

including (but not limited to) salinity, water temperature, dissolved organic carbon, 

nutrients, dissolved oxygen, and transport of individual neutrally-buoyant particles. 

DSM2 is a powerful tool for analysis of complex hydrodynamic, water quality, and 

ecological conditions, and has a long history of use within DWR to address various flow 

and water quality problems.  

2.2.1 DSM2 TURBIDITY MODEL  

A recent version of the DSM2 model was used to simulate turbidity within the Delta (Liu 

and Sandhu, 2011). In this application, turbidity was simulated as a constituent governed 

by advection-dispersion with first-order decay/loss due to settling. The model was 
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calibrated for the wet season of 2010, using detailed turbidity data available at a number 

of locations at 15-minute intervals, and using variable decay rates through the Delta 

(varying in space, but constant in time). The calibrated DSM2 model is considered 

appropriate for the use here because: 1) the model was calibrated for high flow time 

periods when the dominant source of turbidity is the watershed derived inputs; 2) the 

model is calibrated for a time period for a typical adult delta smelt pre-spawning period 

of approximately December through February. Model-simulated turbidity at 15-minite 

intervals and daily average values compared well with observed values at a number of 

locations including the Sacramento River at Rio Vista, Decker Island, Prisoner’s Point, 

Holland Cut, San Joaquin River at Jersey Point, Garwood, Mossdale, Brandt Bridge, and 

Old River at Bacon Island, and Victoria Canal.  

2.2.2 FORMULATION OF BOUNDARY CONDITION SCENARIOS  

The calibrated DSM2 turbidity model (Liu and Sandhu, 2011) was used for simulating 

flow and turbidity relationships within the Delta under a set of formulated boundary 

scenarios. The DSM2 model was run for a period of 20 years from 1990–2010. The 

formulated boundary scenarios take into account combinations of different turbidity 

levels (low, middle, and high levels) from three sources: North Delta (Sacramento River+ 

Yolo), San Joaquin River, and east side tributaries (Mokelumne, Cosumnes, and 

Calaveras Rivers). Turbidity from Delta Islands and Martinez locations were set as 

constants. The boundary scenarios also considered the effect of south Delta diversions 

(SWP and CVP). A total of 12 scenarios were formulated (Table 2-1). The model was run 

under the assumptions that: 1) the DCC gate is closed during all months; 2) south Delta 

temporary barriers are not installed. The assumption is reasonable given that the ANN 

model is expected to be used for December through February periods. Detailed flow-

turbidity relationships used to determine boundary turbidity inputs under low, middle or 

high turbidity conditions at different boundary locations are listed in Appendix A. The 

derived boundary conditions for the low, middle and high turbidity levels are shown 

graphically in Figure 2-1.  
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Table 2-1 
DSM2 Simulations and Associated Turbidity 

Boundary Conditions Used for Generating ANN Training Data  

Run Hydrology Sacramento SJR Yolo Cosumnes Mokelumne Calaveras Islands Martinez 

1 Historical Low Low Low Low Low Low 10 ntu 26.6 ntu 

2 Historical Mid Low Mid Mid Mid Mid 10 ntu 26.6 ntu 

3 Historical High Low High High High High 10 ntu 26.6 ntu 

4 Historical Low High Low Low Low Low 10 ntu 26.6 ntu 

5 Historical Mid High Mid Mid Mid Mid 10 ntu 26.6 ntu 

6 Historical High High High High High High 10 ntu 26.6 ntu 

7 
Historical w/o 

Exports 
Low Low Low Low Low Low 10 ntu 26.6 ntu 

8 
Historical w/o 

Exports 
Mid Low Mid Mid Mid Mid 10 ntu 26.6 ntu 

9 
Historical w/o 

Exports 
High Low High High High High 10 ntu 26.6 ntu 

10 
Historical w/o 

Exports 
Low High Low Low Low Low 10 ntu 26.6 ntu 

11 
Historical w/o 

Exports 
Mid High Mid Mid Mid Mid 10 ntu 26.6 ntu 

12 
Historical w/o 

Exports 
High High High High High High 10 ntu 26.6 ntu 
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a. Sacramento River 

 
b. San Joaquin River  

 
c. Yolo Bypass 

 
d. Cosumnes River 
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e. Mokelumne River  

 
f. Calaveras River  

 
Figure 2-1  Boundary conditions of low, middle, and high turbidity levels at: a) Sacramento River; b) 

San Joaquin River; c) Yolo Bypass; d) Cosumnes; e) Mokelumne, and f) Calaveras 
Rivers.  

2.3 ARTIFICIAL NEURAL NETWORK MODEL 

2.3.1 MODEL INPUTS  

For the ANN model training, a set of six input variables were used. These input variables 

were considered to be the main boundary conditions that influence turbidity dynamics 

within Delta. These inputs include three flow and three turbidity variables. The three flow 

inputs are: north Delta inflow, east side stream inflow, and calculated Old and Middle 

River (OMR) flow. Three turbidity inputs are north Delta turbidity, east side stream 

turbidity, and San Joaquin River (Vernalis) turbidity.  

2.3.1.1 NORTH DELTA INFLOW  

The north Delta inflow was calculated as the total of the Sacramento River and Yolo 

Bypass inflow. Observed daily flow records from the Sacramento River at Freeport and 

Yolo Bypass flow from DSM2 for the period of 1990– 2010 were used in formulating the 

ANN input time series of this variable, originally obtained from DAYFLOW of IEP 

(http://www.water.ca.gov/dayflow/output/index.cfm).  
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2.3.1.2 EAST SIDE STREAM INFLOW  

The East Side stream flow was calculated as total of inflow from the Mokelumne River, 

the Cosumnes River and the Calaveras River. Daily flow records for the period of 1990–

2010 at these locations from DSM2 were derived from DSM2 inputs, compiled by DWR, 

originally obtained from DAYFLOW of IEP, (http://www.water.ca.gov/dayflow/ 

output/index.cfm).  

2.3.1.3 OLD AND MIDDLE RIVER (OMR) FLOW  

As found in previous work, there is a correlation between adult Delta smelt salvage at the 

CVP-SWP export pumps and the combined OMR flows near Bacon Island (Smith et al., 

2006). Several hydraulic forces determine the volume and direction of flows at these 

locations. The key hydraulic forces include: San Joaquin River flows entering the head of 

Old River, water diversions from the south Delta, and tides. The empirical OMR flow 

model implemented in the CalSim model was used; this model is calibrated with data 

generated by DWR’s DSM2 and validated with field observations (Hutton, 2008). A 

south Delta water balance was used in determining OMR flows:  

OMR flow = San Joaquin River flow at Vernalis  

+ Indian Slough flow at Old River 

– San Joaquin River flow downstream of HOR  

– Clifton Court Forebay diversions  

– Jones pumping plant diversions  

– CCWD Old River intake diversions 

– South Delta net channel depletion  

The above water balance was used in calculating OMR flow for ANN input. DSM2 

boundary conditions were used for San Joaquin River flows at Vernalis, diversions at 

Jones Pumping Plant and CCWD Old River intake (Hutton, 2008). Computed data from 

DWR’s Delta Island Consumptive Use (DICU) model were used in the water balance for 

south Delta net channel depletions. DSM2 simulated data were used in water balance 

calculation for flows at Indian Slough at Old River, San Joaquin River downstream of 

HOR (Head of Old River) and diversions at Clifton Court Forebay. The data used to 

compute the south Delta water balance are listed in Table 2-2.  
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Table 2-2 
DSM2 data used in OMR flow calculation Hutton (2008)  

Data Type Data Location Observed or Computed 

River Flow Old River at Bacon Island  Computed 

River Flow Middle River at Bacon Island  Computed 

River Flow San Joaquin River at Vernalis  Observed 

River Flow  Indian Slough at Old River  Computed 

River Flow San Joaquin River d/s HOR  Computed 

Diversion  Clifton Court Forebay  Computed 

Diversion Jones Pumping Plant  Observed 

Diversion CCWD Intake at Old River  Observed 

Diversion  South delta net channel depletions  Computed 

 

2.3.1.4 NORTH DELTA TURBIDITY  

The north Delta turbidity was calculated as flow-weighted averages of turbidities at the 

Sacramento River at Freeport and Yolo Bypass. Turbidities at Sacramento River at 

Freeport and Yolo Bypass were computed based on flow and turbidity relationships 

derived from an analysis (outlined in Appendix A) for low, mid and high turbidity input 

levels (RMA, 2010; Hutton, personal communication). The flow records used to derive 

turbidity inputs are observed values used in the DSM2 inputs.  

2.3.1.5 EAST SIDE STREAM TURBIDITY  

The east side stream turbidity was calculated as flow weighted averages of turbidities at 

the Mokelumne, Cosumnes, and Calaveras Rivers. Turbidities at these tributaries were 

computed based on flow and turbidity relationships derived from an analysis (outlined in 

Appendix A) for low, middle and high turbidity input levels (RMA, 2010). The flow 

records for derive turbidity inputs are observed values used in the DSM2 inputs.  

2.3.1.6 VERNALIS TURBIDITY  

Turbidity from San Joaquin River at Vernalis was computed based on flow-turbidity 

relationships derived from an analysis (outlined in Appendix A) for low, middle and high 

turbidity input levels (RMA, 2010). The flow records for deriving turbidity inputs are 

observed values used in the DSM2 inputs.  

2.3.2 ANN OUTPUT LOCATIONS 

The DSM2 model simulates turbidity at locations throughout the Delta, a subset of which 

were used for this work. DSM2 output at 15-minute intervals was used to compute daily 

averages for the ANN training. DSM2 simulations of turbidity at these selected locations 

were used in training and for developing the Delta turbidity ANN model. The model was 

focused on turbidity at seven locations of interest (Figure 2-2):  
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 Sacramento River at Rio Vista  

 Old River at Bacon Island 

 Old River at Quimby Island 

 San Joaquin River at Prisoner’s Point 

 Middle River at Holt  

 Clifton Court Forebay Entrance 

 Victoria Canal at Byron  

The training data set consisted of values over a 20-year hydrologic period for 12 

boundary conditions, representing 365x20x12 (=87,600) data points for each output 

location. 

 
Figure 2-2 Map of the Delta showing the stations used for ANN output. Values at these stations 

were obtained from DSM2 runs for 12 boundary scenarios. 

2.3.3 ANN MODEL STRUCTURE 

The ANN architectures in common use have been divided into feed-forward and 

recurrent networks (Maier et al. 2010). The feed-forward network propagates information 

in one direction, from input layer to output layer. The recurrent network propagates 

information not only in one direction, but also has a feedback loop to feed information to 
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previous layer or the same layer. There are several types of feed-forward network 

architectures, including Multilayer Perceptrons (MLPs), Generalized Regression Neural 

Networks (GRNNs), Radial Basis Function (RBF) networks, Neurofuzzy networks and 

support vector machine (SVMs).  

An MLP is the most commonly used architecture employing three or more layers with 

linear or non-linear functions. The input layer simply passes on the weighted inputs to the 

subsequent layer. The use of non-linear functions at the hidden and output layers provides 

the capability to model complex systems with non-linearity. A GRNN is able to 

approximate any function using input and output, which consists of four layers, an input 

layer, a pattern layer, a summation layer, and an output layer. GRNNs do not rely on 

training but use a standard statistical technique called kernel regression for deriving 

weights. RBF networks are similar to MLPs. The major difference is that the hidden layer 

neurons are specified by radial basis functions and output layer neurons uses linear 

activation functions. The neurofuzzy networks are based on an integration of neural 

networks and fuzzy logic. SVMs are machine learning algorithms in which the risk of 

prediction error and risk associated with model structure are minimized simultaneously.  

Recently, recurrent or auto-regressive networks, i.e., networks with internal feedbacks, 

have been proposed as alternatives to feed-forward networks. In this case the model 

output (or predicted values) can be fed back into the model input with a time lag. Feed-

forward networks may also be considered as special cases of recurrent networks. Feed-

forward networks require dynamic systems to be treated explicitly, which is achieved 

through specifying time lagged inputs. Recurrent networks model dynamic properties 

implicitly. However, it has been found that recurrent networks have difficulties in 

capturing long-term dependencies. The nonlinear autoregressive network with exogenous 

inputs (NARX) recurrent network, which uses an explicit time lag, is considered to be an 

improvement over traditional recurrent networks, and may be considered for the present 

application.  

The dynamic nature of flow and turbidity in the Delta requires a network structure that 

takes into account the time-series effect. Although other network structures may receive 

increasing attention in the recent literature, the MLPs are by far the most popular network 

structure used in water resources applications to date, representing more than 90% of 

peer-reviewed applications in the water resources field (Maier et al. 2010). For this 

reason, the feed-forward MLP network was selected in this study, and is shown 

schematically in Figure 2-3. In this network, the input layer, termed x(t) contains time 

series of six input variables (3 flow inputs, and 3 turbidity inputs as described earlier). 

The hidden layer uses 15 neurons, which is formulated based on input variables using a 

set of weights (W) and biases (b). For 15 neurons and 6 input variables, this will yield a 

total of 90 weights and 90 bias parameters that need to be adjusted during training. An 

input time delay of 1–4 days can be used, each with its own set of weights and bias 

parameters. For a time delay of 2 days, the network will yield 180 weights and 180 bias 
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parameters. The output layer, y(t), contains seven output variables. The hidden layer is 

converted to the output layer through another set of weights and biases.  

 
Figure 2-3 Feed-forward ANN model structure (inputs = 6 boundaries (3 flow + 3 turbidity), hidden 

neurons = 10; time delay = 1–4 days; outputs: turbidity at 7 locations). x(t) represents the 
input, y(t) the output, and W and b represents the weights and biases.  

The network structure, together with the model architecture, defines the functional 

relationships between the input layer and the output layer. The structure, specifically the 

number of neurons and the time lag is determined through varying network size and time 

of delay to determine network configuration that provides the highest correlation between 

the predicted and observed results. This is basically a trial and error approach and is 

widely used in training of similar data sets (Maier et al., 2010). For the current 

application, the ANN model was implemented using the Neural Network Toolbox, an 

add-on package in the Matlab programming environment (Beale et al., 2011). Through 

testing across a wide range of network sizes and time delays, an optimal size and of time 

delay was found, when correlations between ANN and DSM2 simulated turbidity were 

the highest.  

In addition to the feed-forward network, which was the primary focus of this study, the 

quality of the fit was also compared to that obtained from the NARX recurrent network, 

where the output of the model at the previous time steps is also used as an input as shown 

on the left side of Figure 2-4. The NARX network training can be implemented in what is 

termed the “open loop” mode, where the output data are used for training. Once the 

model is trained, it can be converted to a “closed loop,” where the values of y(t) on the 

left side are obtained from ANN for the previous time step. 
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Figure 2-4 Matlab NARX ANN model structure (y(t) = f(x(t-1), …., x(t-d)); inputs = 6 boundaries (3 

flow + 3 turbidity), hidden neurons = 10; time delay = 1–4 days; outputs: turbidity at 7 
locations). During training, y(t) on the left side can be approximated by the training data 
(termed “open loop”), and during testing, y(t) can be replaced by the ANN predicted value 
(termed “closed loop”). 

2.3.4 TRAINING APPROACH  

The majority of the ANN calibration approaches is deterministic, through determination 

of a single parameter vector that minimizes an error measure between predicted and 

observed values (Maier et al. 2010). This approach was employed in the present study. 

Two general types of deterministic optimization approaches exist: the global optimization 

and the local optimization. The local methods are prone to becoming trapped in local 

optima if the error surface is rugged, however they are generally computationally more 

efficient. The local methods rely on gradient information, through first-order methods 

(e.g., back-propagation) or second-order methods (e.g., Newton’s method). Global 

optimization methods, such as genetic algorithms, have better ability to find global 

optima in error surface however are less computationally efficient. Therefore for the 

ANN training, the back-propagation (Levenberg-Marquardt back-propagation) method is 

commonly used.  

2.3.5 ANN MODEL SIMULATION AND VALIDATION  

The DSM2 model results of flow at Delta locations were used to calculate OMR flow as 

one input to the ANN model. DSM2-simulated turbidity at seven locations of interest 

from the twelve scenarios was used as training targets. During the training process, the 

model development dataset is usually divided into training, validation and testing 

purposes. The training dataset is used to compute the gradient and determine the model 

parameters (weights and bias). The validation dataset is used to find minimum error point 

and prevent over training. An error is monitored on the validation dataset during training. 

The validation error normally decreases during the initial phase of training, as does the 

training set error. However, when the network begins to over-fit the data, the error on the 

validation set typically begins to rise. When the validation error increases for a number of 

iterations, the training is stopped, and the parameters at the minimum validation error are 

returned. The test dataset is not used in the training (e.g., for stopping the network) and 

provides an independent evaluation on network performance. 
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In this work, the data was divided in the following manner: 60%, 20%, and 20% was 

used for training, validation and testing, respectively. The data points for training, 

validation and testing were randomly selected from the entire dataset for each training 

cycle.  
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3 RESULTS  

3.1 DSM2 SIMULATED TURBIDITY AT TARGET LOCATIONS  

The DSM2 simulated turbidity time series at seven target locations for each of the twelve 

scenarios are presented below (Figure 3-1 through Figure 3-7). To ensure that the DSM2 

outputs in this work were identical to those obtained by DWR, values were compared to 

those in Liu and Sandhu (2011) using identical inputs and output time periods. This 

information is presented in Appendix B for different locations in the Delta.  

 
Figure 3-1  DSM2 simulated turbidity under twelve boundary conditions at Sacramento River at Rio 

Vista. Each line in this plot corresponds to a single boundary condition in Table 2-1. 
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Figure 3-2  DSM2 simulated turbidity under twelve boundary conditions at Old River at Bacon Island. 

 
Figure 3-3 DSM2 simulated turbidity under twelve boundary conditions at Old River at Quimby Island. 

 
Figure 3-4  DSM2 simulated turbidity under twelve boundary conditions at San Joaquin River at 

Prisoner’s Point. 
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Figure 3-5  DSM2 simulated turbidity under twelve boundary conditions at Middle River at Holt. 

 
Figure 3-6  DSM2 simulated turbidity under twelve boundary conditions at Clifton Court Forebay. 

 
Figure 3-7  DSM2 simulated turbidity under twelve boundary conditions at Victoria Canal. 

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

N
T

U

0

10

20

30

40

50

60

70

80

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S10SS+FROM-A BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S11SS+FROM-A BOD

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S12SS+FROM-A BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S1S+FROM-ALL BOD

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S2S+FROM-ALL BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S3SD+FROM-AL BOD

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S4SD+FROM-AL BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S5SD+FROM-AL BOD

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S6SD+FROM-AL BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S7SD+FROM-AL BOD

MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S8SD+FROM-AL BOD MIDDLE-R-HOLT_RMID005 HIST_MINI_CALIB_V805S9SD+FROM-AL BOD

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

N
T

U

0

10

20

30

40

50

60

CHWST000 HIST_MINI_CALIB_V805S10SS+FROM-A BOD CHWST000 HIST_MINI_CALIB_V805S11SS+FROM-A BOD

CHWST000 HIST_MINI_CALIB_V805S12SS+FROM-A BOD CHWST000 HIST_MINI_CALIB_V805S1S+FROM-ALL BOD

CHWST000 HIST_MINI_CALIB_V805S2S+FROM-ALL BOD CHWST000 HIST_MINI_CALIB_V805S3SD+FROM-AL BOD

CHWST000 HIST_MINI_CALIB_V805S4SD+FROM-AL BOD CHWST000 HIST_MINI_CALIB_V805S5SD+FROM-AL BOD

CHWST000 HIST_MINI_CALIB_V805S6SD+FROM-AL BOD CHWST000 HIST_MINI_CALIB_V805S7SD+FROM-AL BOD

CHWST000 HIST_MINI_CALIB_V805S8SD+FROM-AL BOD CHWST000 HIST_MINI_CALIB_V805S9SD+FROM-AL BOD

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

N
T

U

0

5

10

15

20

25

30

35

40

45

50

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S10SS+FROM-A BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S11SS+FROM-A BOD

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S12SS+FROM-A BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S1S+FROM-ALL BOD

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S2S+FROM-ALL BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S3SD+FROM-AL BOD

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S4SD+FROM-AL BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S5SD+FROM-AL BOD

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S6SD+FROM-AL BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S7SD+FROM-AL BOD

VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S8SD+FROM-AL BOD VICT-CNL-BY RON_CHVCT000 HIST_MINI_CALIB_V805S9SD+FROM-AL BOD



DASM-T: Delta ANN Simulation Model for Turbidity, Phase 1 Results 

3-4 August 8, 2012 Tetra Tech, Inc. 

3.2 ANN TRAINING RESULTS  

The ANN models for the seven target locations were trained for feed-forward networks 

using the back propagation method. The structure of the network (number of neurons and 

days of time lag) was determined through trial and error, by comparing training results 

with different network size and time of delay. An optimal size of 15 neurons and 4 days 

of time delay was found, when the correlation between ANN and DSM2 simulated values 

was the highest (Figure 3-8). A network size with 15 neurons was selected because it 

shows some improvement in predictions at selected locations (Middle River at Holt and 

Victoria Canal). There is also improvement in predictions from increasing of time delay 

from 2 days to 4 days. A 15-neuron model is considered appropriate for the current 

application, however, if computational efficiency is more important, a network size of 10 

neurons may be used. The fit obtained by the NARX model using an open loop (i.e., 

using the actual DSM2 values from the output locations as well as the boundary locations 

as part of the training) is also shown and is consistently higher than that obtained from 

the feed-forward network, that is based only on values from boundary locations. For the 

trained feed-forward network, the quality of the fit for subsets of the data, i.e., the data 

used for training, validation, and testing, as well as all data, are shown in Figure 3-9. 

Training and validation data sets have a high value of correlation coefficient (R), with the 

independent test data set being only marginally lower. The comparison of the trained and 

fitted values and the error associated with the training are shown in time series form in 

Appendix C. 

 
Figure 3-8.  Correlation coefficient (R) between trained and target turbidity values for different sizes of 

the network, shown on the x-axis as the number of neurons, and using NARX open loop 
structure. d represents the days of delay in the input. 
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Figure 3-9. Correlation between trained and DSM2 simulated turbidity for the training, validation and 

test dataset for feed-forward network training.  

The results of the training are presented as time-series of ANN-simulated turbidity 

compared to DSM2-simulated turbidity at target locations and correlation between ANN 

and DSM2 simulated daily and monthly turbidity (Figure 3-10 to Figure 3-23). The seven 

locations can be trained as one model (with one single measure of error for seven output 

variables) or as seven separate models (with a separate measure of error for each output 

variable). For brevity, the results for one single model training for one representative 

scenario, Scenario 5 in Table 2-1, is shown for the time series plots presented here. The 

scatter plots comparing ANN and DSM2 results, however, show values for 12 scenarios 

evaluated. Results for ANN training for all the twelve scenario boundary conditions are 

shown in Appendix D. Comparison of the use of a single model for all seven output 

stations against the use of seven separate ANNs is presented in a later section. 

The single ANN model is generally able to capture temporal variations, in turbidity 

particularly during winter months of December–February. The correlation between ANN 

and DSM2 simulated turbidity is fairly good at different locations for daily values (R
2
 = 

0.75 – 0.97) and improved for monthly values (R
2
 = 0.84 – 0.996) (Table 3-1). The 

evaluation for both time steps (daily and monthly) was due to potential uses of this 

methodology for different planning purposes in the Delta: Operations planning will be 

mainly focused on daily estimates, however, longer-term water allocation planning 

through CALSIM will be focused on monthly estimates. Because the range of turbidities 

found at Rio Vista are the broadest of all output stations considered here, the fit was 

significantly better for this station than other stations. More importantly, the better fit 
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could be due to that impulse-response is less complex at Rio Vista, as Rio Vista is mainly 

influenced by the North Delta boundary.  

 
Figure 3-10  DSM2 and ANN simulated time-series turbidity at Sacramento River at Rio Vista 

(scenario 5). 

 

 
Figure 3-11  DSM2 and ANN simulated daily and monthly turbidity at Sacramento River at Rio Vista 

(all data).  
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Figure 3-12  DSM2 and ANN simulated turbidity at Old River at Bacon Island (scenario 5). 

 

 
Figure 3-13  DSM2 and ANN simulated daily and monthly turbidity at Old River at Bacon Island  

(all data).  

0

10

20

30

40

50

60
Tu

rb
id

it
y 

(N
TU

)

OLD-R-BACON_ROLD024

ANN

DSM2

y = 1.0313x - 0.2
R² = 0.9528

0

5

10

15

20

25

0 5 10 15 20 25

A
N

N
 M

o
n

th
ly

 T
u

rb
id

it
y 

(N
TU

)

DSM2 Monthly Turbidity (NTU)



DASM-T: Delta ANN Simulation Model for Turbidity, Phase 1 Results 

3-8 August 8, 2012 Tetra Tech, Inc. 

 
Figure 3-14  DSM2 and ANN simulated time-series turbidity at Old River at Quimby Island  

(scenario 5). 

 

 
Figure 3-15  DSM2 and ANN simulated daily and monthly turbidity at Old River at Quimby Island  

(all data).  
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Figure 3-16  DSM2 and ANN simulated turbidity at San Joaquin River at Prisoner’s Point 

(scenario 5). 

 

 
Figure 3-17  DSM2 and ANN simulated daily and monthly turbidity at San Joaquin River at Prisoner’s 

Point (all data). 
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Figure 3-18  DSM2 and ANN simulated turbidity at Middle River at Holt (scenario 5). 

 

 
Figure 3-19  DSM2 and ANN simulated daily and monthly turbidity at Middle River at Holt (all data). 
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Figure 3-20  DSM2 and ANN simulated turbidity at Clifton Court Forebay Entrance (scenario 5). 

 

 
Figure 3-21  DSM2 and ANN simulated daily and monthly turbidity at Clifton Court Forebay (all data).  
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Figure 3-22  DSM2 and ANN simulated turbidity at Victoria Canal (scenario 5). 

 

 
Figure 3-23  DSM2 and ANN simulated turbidity at Victoria Canal (all data). 
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Table 3-1 
Comparison of ANN and DSM2 Simulated Turbidity at  

Delta Locations ANN Turbidity (ntu) = Φ1 + Φ2*DSM2 turbidity (ntu)  
(R = correlation coefficient; SE = Standard Error) 

Location 

Daily Monthly 

Φ2 Φ1 R
2
 SE Φ2 Φ1 R

2
 SE 

Clifton Court Forebay Entrance 0.799 2.2208 0.797 5.548 1.0587 -0.667 0.936 2.090 

Middle River @ Holt 0.7619 1.1582 0.755 2.693 1.0897 -0.444 0.917 1.166 

Old River @ Bacon Island  0.849 0.9216 0.841 2.885 1.0313 -0.200 0.953 1.082 

Old River @ Quimby Island  0.8353 1.3916 0.828 4.247 1.0701 -0.5975 0.932 1.637 

San Joaquin River @ Prisoner’s Point 0.7616 2.365 0.755 5.535 1.0587 -0.6009 0.905 2.107 

Sacramento River @ Rio Vista  0.9685 1.6406 0.969 10.080 1.0062 -0.2923 0.996 2.598 

Victoria Canal  0.8979 0.7116 0.896 2.417 1.0156 -0.1192 0.965 1.118 

 

3.3 TRAINING WITH TIDAL EFFECTS  

The time-series plots of ANN training results shown above at several locations (e.g., 

Clifton Court Forebay, Old River at Bacon) suggested that some tidal effects may not be 

accounted for by the ANN training, although they are part of the DSM2 model (an 

example is shown in Figure 3-24). This is due to tides not being part of the ANN model 

inputs in the results shown thus far. To account for tidal effects on Delta turbidity and 

subsequently impacts of tides on the ANN training, a tidal input was added to the ANN 

model. A tidal input was added by introducing a DSM2-simulated OMR flow, an input 

which retains the information on tidal variation. The results of using this alternative OMR 

flow as ANN model input are presented below (Figure 3-25 to Figure 3-38). The results 

show no significant improvement in model agreement with DSM2 simulated turbidities. 

The correlation between ANN simulated turbidity with tidal effect and the DSM2 

generated turbidity is broadly similar at different locations for daily (R
2
 = 0.69 – 0.94) 

and monthly (R
2
 = 0.89 – 0.99) results (Table 3-2).  
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Figure 3-24 DSM2 and ANN simulated (with tidal effect) time-series turbidity. 
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Figure 3-25  DSM2 and ANN simulated (with tidal effect) time-series turbidity at Sacramento River at 

Rio Vista (scenario 5). 

 

 
Figure 3-26  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Sacramento 

River at Rio Vista (all data).  
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Figure 3-27  DSM2 and ANN simulated (with tidal effect) turbidity at Old River at Bacon Island 

(scenario 5). 

 

 
Figure 3-28  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Old River at 

Bacon Island (all data).  
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Figure 3-29  DSM2 and ANN simulated (with tidal effect) time-series turbidity at Old River at Quimby 

Island (scenario 5). 

 

 
Figure 3-30  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Old River at 

Quimby Island (all data).  
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Figure 3-31  DSM2 and ANN simulated (with tidal effect) turbidity at San Joaquin River at Prisoner’s 

Point (scenario 5). 

 

 
Figure 3-32  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at San Joaquin 

River at Prisoner’s Point (all data). 
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Figure 3-33  DSM2 and ANN simulated (with tidal effect) turbidity at Middle River at Holt 

(scenario 5). 

 

 
Figure 3-34  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Middle River at 

Holt (all data). 
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Figure 3-35  DSM2 and ANN simulated (with tidal effect) turbidity at Clifton Court Forebay Entrance 

(scenario 5). 

 

 
Figure 3-36  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Clifton Court 

Forebay (all data).  
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Figure 3-37  DSM2 and ANN simulated (with tidal effect) turbidity at Victoria Canal (scenario 5). 

 

 
Figure 3-38  DSM2 and ANN simulated (with tidal effect) daily and monthly turbidity at Victoria Canal 

(all data).  
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Table 3-2 
Comparison of ANN and DSM2 Simulated Turbidity at Delta Locations 
with Tidal Effects ANN Turbidity (ntu) = Φ1 + Φ2*DSM2 turbidity (ntu)  

(R = correlation coefficient; SE = Standard Error) 

Location 

Daily Monthly 

Φ2 Φ1 R
2
 SE Φ2 Φ1 R

2
 SE 

Clifton Court Forebay Entrance 0.7782 2.4331 0.777 5.836 1.0799 -0.8814 0.919 2.373 

Middle River @ Holt 0.766 1.1311 0.761 2.666 1.1002 -0.4851 0.915 1.184 

Old River @ Bacon Island  0.8376 0.9718 0.832 2.987 1.0363 -0.2082 0.954 1.068 

Old River @ Quimby Island  0.8554 1.213 0.851 3.931 1.0721 -0.6056 0.934 1.620 

San Joaquin River @ Prisoner’s Point 0.7708 2.264 0.767 5.398 1.0805 -0.8073 0.889 2.291 

Sacramento River @ Rio Vista  0.9694 1.6077 0.969 9.989 1.0064 -0.3208 0.996 2.639 

Victoria Canal  0.8704 0.8841 0.870 2.813 1.0477 -0.3199 0.964 1.161 

 

3.4 EVALUATION OF SINGLE ANN MODEL VERSUS SEVEN SEPARATE 

MODELS  

Results for training as separate models for each individual output location were compared 

to the single model training (Table 3-3). When training as separate models, the measure 

of error of each variable was minimized separately, therefore should result in better 

model performance. The comparison shows a slight improvement over the single model 

training, however the improvement is not large enough to justify the use of multiple 

models.  

Table 3-3 
Comparison of Training Results Using One Single Model and 

Seven Separate Models ANN Turbidity (ntu) = Φ1 + Φ2*DSM2 turbidity (ntu) 
(R = correlation coefficient; SE = Standard Error) 

Location 

One Model Seven Models 

Φ2 Φ1 R2 SE Φ2 Φ1 R2 SE 

Clifton Court Forebay Entrance 0.799 2.2208 0.797 5.548 0.8288 1.8836 0.828 5.079 

Middle River @ Holt 0.7619 1.1582 0.755 2.693 0.8132 0.9037 0.808 2.295 

Old River @ Bacon Island  0.849 0.9216 0.841 2.885 0.8618 0.8277 0.861 2.646 

Old River @ Quimby Island  0.8353 1.3916 0.828 4.247 0.8727 1.0581 0.871 3.616 

San Joaquin River @ Prisoner’s Point 0.7616 2.365 0.755 5.535 0.7599 2.3895 0.758 5.495 

Sacramento River @ Rio Vista  0.9685 1.6406 0.969 10.080 0.9717 1.5179 0.973 9.424 

Victoria Canal  0.8979 0.7116 0.896 2.417 0.9242 0.5461 0.925 1.914 

 

3.5 EVALUATION OF ALTERNATIVE NETWORK STRUCTURE  

An alternative network structure, the nonlinear autoregressive network with exogenous 

inputs (NARX) network was explored as alternative structure for ANN training.  



 DASM-T: Delta ANN Simulation Model for Turbidity, Phase 1 Results 

Tetra Tech, Inc. August 8, 2012 3-23 

The results suggested notably increased correlation between ANN simulated and DSM2 

turbidities by using the NARX open loop structure (Table 3-4, and representative location 

in Figure 3-39), where the inputs include boundary values and DSM2 generated values at 

output locations. A NARX trained in an open loop mode can be converted to closed loop 

NARX, where the ANN-predicted values from the preceding time-steps are used as input. 

The results suggest that when the network is converted to a closed loop, the predictions 

have no improvement over the feed-forward network (Table 3-4). However, the fact that 

the open loop network provides very high quality fits offers the promise that if there is 

information available at output locations from preceding time-steps, such as through the 

collection of real-time data embarked upon by the DWR since 2009, an ANN could be 

trained to provide higher quality predictions over short time frames. 

 

 
Figure 3-39 Example of ANN developed using the NARX structure. DSM2 and ANN simulated 

turbidity values are shown for Prisoner Point (scenario 5). 

-100

-50

0

50

100

150

200

Tu
rb

id
it

y 
(N

TU
)

RIO-VISTA_RSAC101

ANN

DSM2

-20

0

20

40

60

80

100

120

Tu
rb

id
it

y 
(N

TU
)

PRISONER-PT_RSAN037

ANN

DSM2



DASM-T: Delta ANN Simulation Model for Turbidity, Phase 1 Results 

3-24 August 8, 2012 Tetra Tech, Inc. 

Table 3-4 
Comparison of ANN and DSM2 Simulated Turbidity at Delta Locations  

using NARX Network ANN Turbidity (ntu) = Φ1 + Φ2*DSM2 turbidity (ntu) 
(R = correlation coefficient; SE = Standard Error) 

Location 

Open Closed 

Φ2 Φ1 R
2
 SE Φ2 Φ1 R

2
 SE 

Middle River @ Holt 0.9776 0.1081 0.967 1.112 0.7773 2.010 0.404 6.030 

Old River @ Bacon Island  0.9731 0.1634 0.957 1.673 0.6896 2.834 0.399 7.317 

Old River @ Quimby Island  0.9650 0.2907 0.946 2.520 0.7418 2.314 0.605 7.040 

San Joaquin River @ Prisoner’s Point 0.9433 0.5523 0.910 3.470 0.7957 3.373 0.554 8.671 

Sacramento River @ Rio Vista  0.9629 2.0420 0.936 14.506 0.9893 0.408 0.971 9.706 

Victoria Canal  0.971 0.3196 0.988 1.383 0.6220 3.711 0.341 8.271 

 

3.6 VALIDATION AGAINST HISTORICAL DATASET 

The trained ANN network was validated using observed data obtained from CDEC for 

the period December 2009 through April 2010. The same dataset was used in the DSM2 

turbidity calibration by Liu and Sandhu (2011). The ANN simulated turbidity was 

compared to observed values at seven target locations. The results suggest the ANN 

model is able to capture the dynamics of turbidity at various locations (Figure 3-40). In 

particular, the ANN was able to produce reasonable estimates at 5 of the 7 locations 

examined, the exceptions being Clifton Court and Middle River at Holt. 
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Figure 3-40  Comparison of ANN simulated turbidity (red) during wet season of 2010 at different 

locations to observed turbidity from CDEC (blue) and simulated turbidity by DSM2 
(green).
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4 SUMMARY AND DISCUSSION  

This study was planned as an exploration of the application of ANNs to represent 

turbidity in the Delta, using synthetic data from DSM2.  ANNs were selected as the 

methodology, given the past success of this tool for modeling salinity in prior work 

performed by DWR.  The present evaluation of ANNs for turbidity (termed Phase 1) 

forms a basis for further development, where the methodology may be applied to a 

greater number of stations and with a wider range of boundary inputs.  

The results presented in the preceding chapter show that the ANN methodology was quite 

successful at representing turbidity at various locations in the Delta. Specifically, using 

boundary values of flow and turbidity alone, a single model ANN was able to capture the 

variation of turbidity at seven locations tested. The quality of the fit was improved 

substantially when the model was used to evaluate performance on a monthly, as opposed 

to a daily, basis. Further testing using separate ANN models for each output location 

showed a modest improvement in fit, but the improvement was not large enough to 

justify the additional complexity of building seven separate models. The ANN modeling 

was also applied using a tidal term in the input and showed minimal improvements in the 

fits. The use of a recurrent (or feedback) network, NARX, where predictions were based 

on boundary values of flow and turbidity as well as turbidity values at the output 

locations, was greatly improved over the feed-forward network in the situation where the 

DSM2 values were used for training. This suggests that ANNs trained with data on 

turbidity at preceding time-steps may be helpful for further improving the quality of the 

fit at short time scales. For longer time scales, as might be used in planning applications 

within CalSim, the feed-forward network may be the best option to use. Overall, these 

results provide confidence that the ANN methodology is promising as a predictive tool in 

the Delta for turbidity over the coming years as part of the management framework 

needed to address the needs that arise from the Delta smelt Biological Opinion. 

The Matlab programming environment used for the ANN development also allows for 

export of a trained network into a stand-alone application. An application for the single 

network trained ANN is provided as part of this Phase 1 process. This application runs 
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from a command prompt, and uses Excel files for input and output. This is a basic 

interface and will be enhanced in a future phase of this work. 

Despite the overall success of the ANN approach, some caveats must be noted. The ANN 

is fit to DSM2 simulated values of turbidity and not to real data. Until further validation 

of the DSM2 turbidity model is performed, it cannot be ascertained if the ANN can 

always predict turbidity in the real-world. Preliminary evaluation of the trained ANN 

against real data (not DSM2 output) show that the ANN does well in locations where 

DSM2 does well at capturing real-world behavior, although there are locations both the 

ANN and DSM2 fits are not very good. Continued calibration and evaluation of the 

DSM2 model as well as continued testing and development of the ANN using observed 

data will help to address this gap. The existing network of turbidity stations with frequent 

measurements of turbidity (every 15 minutes) provides a basis for this continued 

development. Also, preliminary testing of the trained ANN showed that performance of 

the model was not robust when inputs in excess of the training range were used. This is a 

typical feature of empirical, data-driven models, and in this case needs to be addressed 

through pre-processing of the input files. 
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APPENDIX A: FLOW-TURBIDITY 

RELATIONSHIPS AT BOUNDARY LOCATIONS  

SACRAMENTO RIVER AT FREEPORT 

Define three flow-turbidity relationships that are approximately based on an RMA 

analysis of suspended sediment data (see Table 4-7 in RMA, 2010). Assume linear 

interpolation to provide continuous turbidity values as a function of flow. 

Flow Range 
cfs Low (50%) Mid (75%) High (90%) 

< 10,000 10 15 20 

12,500 20 30 40 

17,500 30 40 70 

22,500 40 60 100 

27,500 60 100 160 

32,500 70 140 280 

37,500 90 160 320 

45,000 100 170 350 

55,000 100 175 300 

65,000 100 140 240 

>70,000 100 140 180 
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SAN JOAQUIN RIVER AT VERNALIS 

Define two flow-turbidity relationships that are loosely based on an RMA analysis of 

suspended sediment data (see Table 4-8 in RMA, 2010). Assume linear interpolation to 

provide continuous turbidity values as a function of flow. 

Flow Range 
cfs Low (50%) High 

<2,000 15 100 

2,750 20 100 

4,250 25 100 

7,500 25 90 

15,000 20 60 

>20,000 15 60 

 

YOLO BYPASS 

Define three flow-turbidity relationships that are loosely based on an RMA analysis (see 

Table 5-2 in RMA, 2010). Assume linear interpolation to provide continuous turbidity 

values as a function of flow. 

Flow Range 
cfs Low Mid High 

<100 20 20 20 

1,000 30 40 60 

5,000 60 120 200 

10,000 100 200 300 

>30,000 100 150 200 
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COSUMNES RIVER 

Define three flow-turbidity relationships that are loosely based on an RMA analysis (see 

Table 4-5 in RMA, 2010) and a WARMF model historical simulation of water years 

2002–2011. Assume linear interpolation to provide continuous turbidity values as a 

function of flow. 

Flow Range 
cfs Low Mid High 

<100 10 10 10 

500 30 50 80 

1,000 50 100 180 

2,000 80 200 280 

>3,000 100 300 300 

 

MOKELUMNE RIVER 

Define the following flow-turbidity relationship that is loosely based on an RMA analysis 

(see Table 4-5 in RMA, 2010). Assume linear interpolation to provide continuous 

turbidity values as a function of flow. 

Flow Range 
cfs Low Mid High 

<100 20 20 20 

500 30 50 80 

>1,000 40 70 100 

 

CALAVERAS RIVER 

Define three flow-turbidity relationships that are loosely based on an RMA analysis (see 

Table 4-5 in RMA, 2010) and a WARMF model historical simulation of water years 

2002–2011. Assume linear interpolation to provide continuous turbidity values as a 

function of flow. 

Flow Range 
cfs Low Mid High 

<50 20 20 20 

100 30 30 40 

>1,000 40 70 100 
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APPENDIX B: COMPARISON OF DSM2 OUTPUT 

TO REAL-TIME TURBIDITY DATA COLLECTED IN 

THE DELTA  

 
Figure B-1  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Sacramento 

River at Rio Vista. 
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Figure B-2  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Old River 

Bacon Island. 

 
Figure B-3  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Old River 

Quimby Island. 
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Figure B-4  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at San Joaquin 

River at Prisoners Point. 

 
Figure B-5  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Middle River 

at Holt. 
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Figure B-6  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Victoria 

Canal. 

 
Figure B-7  DSM2 simulated turbidity (red) and observed turbidity from CDEC (blue) at Clifton Court. 
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APPENDIX C: TIME SERIES OF TRAINED AND 

DSM2 SIMULATED TURBIDITY FOR THE 

TRAINING, VALIDATION AND TEST DATASETS 

FOR: A) TWELVE SCENARIOS; B) 20-YEAR;  
C) 5-YEAR; AND D) 1-YEAR PERIOD OF 

SCENARIO 5 

a) Twelve Scenarios 

 
b) 20-year (Scenario 5) 
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c) 5-year (Scenario 5) 

 
d) 1-year (Scenario 5)  
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APPENDIX D: ANN TRAINED TURBIDITY USING 

12 SCENARIOS COMPARED TO DSM2 

SIMULATED TURBIDITY  

 

 

 

 

 

-10

0

10

20

30

40

50

60

70

Tu
rb

id
it

y 
(N

TU
)

Clifton Court Forebay 

ANN

DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1

-10

0

10

20

30

40

50

60

70

80

90

Tu
rb

id
it

y 
(N

TU
)

MIDDLE-R-HOLT_RMID005

ANN

DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1

-20

0

20

40

60

80

100

Tu
rb

id
it

y 
(N

TU
)

OLD-R-BACON_ROLD024

ANN

DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1

-20

0

20

40

60

80

100

120

140

Tu
rb

id
it

y 
(N

TU
)

OLD-R-QUIMBY_CH119 ANN DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1

-20

0

20

40

60

80

100

120

140

160

Tu
rb

id
it

y 
(N

TU
)

PRISONER-PT_RSAN037 ANN DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1



DASM-T: Delta ANN Simulation Model for Turbidity, Phase 1 Results 

D-2 August 8, 2012 Tetra Tech, Inc. 

 

 
 

0

50

100

150

200

250

300

350

Tu
rb

id
it

y 
(N

TU
)

RIO-VISTA_RSAC101 ANN DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12
BC1

-20

-10

0

10

20

30

40

50

60

Tu
rb

id
it

y 
(N

TU
)

VICT-CNL-BYRON_CHVCT000 ANN DSM2

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11 BC12BC1


