Delta Turbidity ANN Model (DASM-T) Development Using DSM-2: Phase 3 Results

Appendices

January 2014

Prepared for: Paul Hutton, Ph.D., P.E. Metropolitan Water District of Southern California 1121 L Street, Suite 900 Sacramento CA 95814-3974

Prepared by: Limin Chen and Sujoy B. Roy Tetra Tech Inc. 3746 Mt. Diablo Blvd, Suite 300 Lafayette, CA 94549

APPENDIX A: FLOW-TURBIDITY RELATIONSHIPS AT BOUNDARY LOCATIONS

A.1 SACRAMENTO RIVER AT FREEPORT

Define three flow-turbidity relationships that are <u>approximately</u> based on an RMA analysis of suspended sediment data from USGS for Sacramento River at Freeport (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low (50%)	Mid (75%)	High (90%)
< 10,000	10	10	10
10,000-20,000	20	20	30
20,000-30,000	35	50	100
30,000-40,000	65	100	260
40,000-50,000	90	120	310
50,000-60,000	90	130	310
60,000-70,000	90	130	230
>70,0000	90	130	200

A.2 SAN JOAQUIN RIVER AT VERNALIS

Define two flow-turbidity relationships that are <u>loosely</u> based on an RMA analysis of suspended sediment data from USGS for San Joaquin River at Vernalis (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low (50%)	High
<3,000	20	80
3,000-4,000	20	90
4,000-5,000	20	110
5,000-6,000	20	110
6,000-10,000	20	110
10,000-20,000	20	80
>20,000	15	50

A.3 YOLO BYPASS

Define three flow-turbidity relationships that are <u>loosely</u> based on an RMA analysis that is based on a WARMF simulation of water years 1975-2012 (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low	Mid	High
<100	25	35	75
100-1,000	40	50	110
1,000-10,000	50	85	370
10,000-30,000	50	90	250
>30,000	70	110	210

A.4 COSUMNES RIVER

Define three flow-turbidity relationships that are <u>loosely</u> based on an RMA analysis that is based on a WARMF model historical simulation of water years 1975-2012 (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low	Mid	High
<100	10	10	10
100-300	10	10	40
300-500	10	10	70
500-1,000	10	20	80
1,000-3,000	20	40	110
3,000-5,000	50	70	120
>5,000	80	100	150

A.5 MOKELUMNE RIVER

Define the following flow-turbidity relationship that is <u>loosely</u> based on an RMA analysis that is based on a WARMF simulation of water years 1975-2012 (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low	Mid	High
<100	2	3	4
100-1,000	3	5	7
>1,000	4	7	10

A.6 CALAVERAS RIVER

Define three flow-turbidity relationships that are <u>loosely</u> based on an RMA analysis that is based on a WARMF simulation of water years 1975- 2012 (RMA, 2013). Assume linear interpolation to provide continuous turbidity values as a function of flow.

Flow Range cfs	Low	Mid	High
<100	10	20	40
100-400	10	20	50
400-1000	20	40	80
>1000	30	60	100

APPENDIX B: FLOW-TURBIDITY RELATIONSHIPS AT BOUNDARY LOCATIONS

Figure B-1 DSM2 simulated turbidity under twelve boundary conditions at Sacramento River at Rio Vista. Each line in this plot corresponds to a single boundary condition in Table 2-1.

Figure B-2 DSM2 simulated turbidity under twelve boundary conditions at San Joaquin River at Decker Island

Figure B-3 DSM2 simulated turbidity under twelve boundary conditions at San Joaquin River at Jersey Point

Figure B-4 DSM2 simulated turbidity under twelve boundary conditions at San Joaquin River at Prisoner's Point

Figure B-5 DSM2 simulated turbidity under twelve boundary conditions at Old River at Holland Cut

Figure B-6 DSM2 simulated turbidity under twelve boundary conditions at Old River at Quimby Island

Figure B-7 DSM2 simulated turbidity under twelve boundary conditions at Old River at Bacon Island

Figure B-8 DSM2 simulated turbidity under twelve boundary conditions at Middle River at Holt

Figure B-9 DSM2 simulated turbidity under twelve boundary conditions at Middle River at Bacon Island

Figure B-10 DSM2 simulated turbidity under twelve boundary conditions at Turner Cut at Holt

Figure B-11 DSM2 simulated turbidity under twelve boundary conditions at Old River at Hwy 4

Figure B-12 DSM2 simulated turbidity under twelve boundary conditions at Old River at Clifton Court Intake

Figure B-13 DSM2 simulated turbidity under twelve boundary conditions at Victoria Canal

Figure B-14 DSM2 simulated turbidity under twelve boundary conditions at Middle River at Union Point

Figure B-15 DSM2 simulated turbidity under twelve boundary conditions at Grant Line Canal at Tracy

Figure B-16 DSM2 simulated turbidity under twelve boundary conditions at San Joaquin River at Garwood

APPENDIX C: COMPARISON OF ANN AND DSM2 SIMULATED TURBIDITY AT 16 TARGET LOCATIONS FOR FEED-FORWARD NETWORKS

Figure C-1 DSM2 and ANN simulated time-series turbidity at Sacramento River at Rio Vista (scenario 5)

Figure C-2 DSM2 and ANN simulated daily and monthly turbidity at Sacramento River at Rio Vista (all data).

DSM2 and ANN simulated turbidity at Decker Island (scenario 5)

Figure C-4

DSM2 and ANN simulated daily and monthly turbidity at Decker Island (all data).

Figure C-6 DSM2 and ANN simulated daily and monthly turbidity at San Joaquin River at Jersey Point (all data).

Figure C-7 DSM2 and ANN simulated turbidity at San Joaquin River at Prisoner's Point (scenario 5)

Figure C-8 DSM2 and ANN simulated daily and monthly turbidity at San Joaquin River at Prisoner's Point (all data).

Figure C-9 DSM2 and ANN simulated turbidity at Old River @ Holland Cut (scenario 5)

Figure C-10 DSM2 and ANN simulated daily and monthly turbidity at Old River at Holland Cut (all data).

Figure C-11 DSM2 and ANN simulated turbidity at Old River at Quimby Island (scenario 5)

Figure C-12 DSM2 and ANN simulated turbidity at Old River at Quimby Island (all data)

Figure C-13 DSM2 and ANN simulated turbidity at Old River at Bacon Island (scenario 5)

Figure C-14 DSM2 and ANN simulated turbidity at Old River at Bacon Island (all data)

Figure C-15 DSM2 and ANN simulated turbidity at Middle River at Holt (scenario 5)

Figure C-16 DSM2 and ANN simulated turbidity at Middle River at Holt (all data)

Figure C-17 DSM2 and ANN simulated turbidity at Middle River at Bacon Island (scenario 5)

Figure C-18 DSM2 and ANN simulated turbidity at Middle River at Bacon Island (all data)

Figure C-19 DSM2 and ANN simulated turbidity at Turner Cut at Holt (scenario 5)

Figure C-20

DSM2 and ANN simulated turbidity at Turner Cut at Holt (all data)

Figure C-21 DSM2 and ANN simulated turbidity at Old River at Highway 4 (scenario 5)

Figure C-22 DSM2 and ANN simulated turbidity at Old River at Highway 4 (all data)

Figure C-23 DSM2 and ANN simulated turbidity at Old River at Clifton Court Intake (scenario 5)

Figure C-24

DSM2 and ANN simulated turbidity at Old River at Clifton Court Intake (all data)

Figure C-25 DSM2 and ANN simulated turbidity at Victoria Canal (scenario 5)

Figure C-26

DSM2 and ANN simulated turbidity at Victoria Canal (all data)

Figure C-27 DSM2 and ANN simulated turbidity at Middle River at Union Point (scenario 5)

Figure C-28 DSM2 and ANN simulated turbidity at Middle River at Union Point (all data)

Figure C-29 DSM2 and ANN simulated turbidity at Grant Line Canal at Tracy (scenario 5)

Figure C-30 DSM2 and ANN simulated turbidity at Grant Line Canal at Tracy (all data)

Figure C-31 DSM2 and ANN simulated turbidity at San Joaquin River at Garwood (scenario 5)

Figure C-32 DSM2 and ANN simulated turbidity at San Joaquin River at Garwood (all data)

APPENDIX D: COMPARISON OF ANN AND DSM2 SIMULATED TURBIDITY AT 16 TARGET LOCATIONS FOR NARX MODEL

Figure D-1 DSM2 and ANN simulated time-series turbidity at Sacramento River at Rio Vista (scenario 5)

Figure D-2 DSM2 and ANN simulated daily and monthly turbidity at Sacramento River at Rio Vista (all data).

Figure D-3

DSM2 and ANN simulated turbidity at Decker Island (scenario 5)

Figure D-4

DSM2 and ANN simulated daily and monthly turbidity at Decker Island (all data).

Figure D-5 DSM2 and ANN simulated turbidity at San Joaquin River at Jersey Point (scenario 5)

Figure D-6 DSM2 and ANN simulated daily and monthly turbidity at San Joaquin River at Jersey Point (all data).

Figure D-7 DSM2 and ANN simulated turbidity at San Joaquin River at Prisoner's Point (scenario 5)

Figure D-8 DSM2 and ANN simulated daily and monthly turbidity at San Joaquin River at Prisoner's Point (all data).

Figure D-9 DSM2 and ANN simulated turbidity at Old River @ Holland Cut (scenario 5)

Figure D-10 DSM2 and ANN simulated daily and monthly turbidity at Old River at Holland Cut (all data).

Figure D-11 DSM2 and ANN simulated turbidity at Old River at Quimby Island (scenario 5)

Figure D-12 DSM2 and ANN simulated turbidity at Old River at Quimby Island (all data)

Figure D-13 DSM2 and ANN simulated turbidity at Old River at Bacon Island (scenario 5)

Figure D-14 DSM2 and ANN simulated turbidity at Old River at Bacon Island (all data)

Figure D-15 DSM2 and ANN simulated turbidity at Middle River at Holt (scenario 5)

Figure D-16 DSM2 and ANN simulated turbidity at Middle River at Holt (all data)

Figure D-17 DSM2 and ANN simulated turbidity at Middle River at Bacon Island (scenario 5)

Figure D-18 DSM2 and ANN simulated turbidity at Middle River at Bacon Island (all data)

Figure D-19 DSM2 and ANN simulated turbidity at Turner Cut at Holt (scenario 5)

Figure D-20 DSM2 and ANN simulated turbidity at Turner Cut at Holt (all data)

Figure D-21 DSM2 and ANN simulated turbidity at Old River at Highway 4 (scenario 5)

Figure D-22 DSM2 and ANN simulated turbidity at Old River at Highway 4 (all data)

Figure D-23 DSM2 and ANN simulated turbidity at Old River at Clifton Court Intake (scenario 5)

Figure D-24 DSM2 and ANN simulated turbidity at Old River at Clifton Court Intake (all data)

Figure D-25 DSM2 and ANN simulated turbidity at Victoria Canal (scenario 5)

Figure D-26 DSM2 and ANN simulated turbidity at Victoria Canal (all data)

Figure D-27 DSM2 and ANN simulated turbidity at Middle River at Union Point (scenario 5)

Figure D-28 DSM2 and ANN simulated turbidity at Middle River at Union Point (all data)

Figure D-29 DSM2 and ANN simulated turbidity at Grant Line Canal at Tracy (scenario 5)

Figure D-30 DSM2 and ANN simulated turbidity at Grant Line Canal at Tracy (all data)

Figure D-31 DSM2 and ANN simulated turbidity at San Joaquin River at Garwood (scenario 5)

Figure D-32 DSM2 and ANN simulated turbidity at San Joaquin River at Garwood (all data)

APPENDIX E: RESIDUAL ANALYSIS FOR FEED-FORWARD NETWORKS

Figure E-1 Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure E-2 Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

Figure E-2 (continued) Correlation between residuals and inputs of turbidity to the ANN mode

APPENDIX F: RESIDUAL ANALYSIS FOR NARX NETWORKS

Figure F-1 Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Metropolitan Water District of Southern California January 2014

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-1 (continued) Correlation between residuals and inputs of flow to the ANN model

Figure F-2 Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

Figure F-2 (continued) Correlation between residuals and inputs of turbidity to the ANN model

APPENDIX G: COMPARISON OF ANN SIMULATED AND DSM2 MULTIYEAR SIMULATION

G-1

Figure G-G-1 Correlation between monthly averages of ANN and DSM2 simulated turbidity for the winter months (December – March) for the multi-year simulation.