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A B S T R A C T

Remote imaging spectroscopy from 400 to 800 nm can use benthic reflectance signatures to map the composition
and condition of shallow water ecosystems. We present a novel probabilistic approach to jointly estimate the
seafloor reflectance and water properties while flexibly incorporating varied domain knowledge and in situ
measurements. The inversion transforms remote radiance data with an atmospheric correction followed by a
water column correction. Benthic reflectance and water optical properties are both represented by linear mix-
tures of endmember spectra. We combine remote measurements, prior knowledge and field data using a flexible
Bayesian optimal estimation, solving for the Maximum A Posteriori (MAP) combination of water column prop-
erties, seafloor reflectance, and depth. We then demonstrate performance in controlled simulations and in
overflights of a coral reef in Hawaii with coincident in situmeasurements. The measurement approach helps lay a
foundation for wide-area airborne mapping of the condition of threatened coastal ecosystems such as coral reefs.

1. Introduction

Remote measurement of benthic reflectance addresses a range of
compelling environmental challenges. Shallow aquatic ecosystems, in-
cluding kelp beds (Bell et al., 2015), coral reefs (Andréfouët et al.,
2007; Hochberg, 2011), seagrass (Chauvaud et al., 1998), and wetlands
(Turpie et al., 2015), serve key roles for coastal populations and the
global environment. They are sites of nutrient and material cycling,
carbon storage, and transport. They act as reservoirs and incubators of
biodiversity (Roberts et al., 2002; Bruckner, 2002), host coastal fishing
economies (White et al., 2000), and protect human settlements from
erosion. These coastal ecosystems are fragile and increasingly threa-
tened by environmental change (Mark Eakin et al., 2010; Nicholls et al.,
2007). Potential dangers include acidification (Hoegh-Guldberg et al.,
2007), agricultural runoff, industrial pollution, overfishing, and in-
vasive species. While such stressors are apparent in small-scale studies,
data is insufficient to characterize regional or global scales. Remote

spectroscopy can fill this gap (Hochberg et al., 2003). Solar illumination
in the 400–800 nm range penetrates shallow water where the bottom
reflectance, Rb, shows diagnostic spectral signatures of different sur-
faces and organisms. Airborne and space-based mapping spectrometers
well-suited to monitor benthic ecosystems (Mumby et al., 2004). Here
we focus on coral reefs, motivated by a wave of airborne campaigns by
instruments such as NASA's Portable Remote Imaging SpectroMeter
(PRISM) (Mouroulis et al., 2014) and the Carnegie Airborne Ob-
servatory (CAO) (Asner et al., 2012). Remote coral reef investigations
use Rb signatures to discriminate bottom types including, but perhaps
not limited to, coral, sand and algae, and thereby study the condition of
Earth's reef ecosystems (Hochberg et al., 2003).

Remote Rb surveys on these scales will require flexibility to in-
corporate diverse in situ measurements and domain knowledge. Such
constraints can mitigate many challenges of measuring Rb. One such
challenge is distortion caused by the intervening atmosphere and water
column (Hedley et al., 2012; Botha et al., 2013). Another is the
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ambiguity between glint, bottom reflectance, depth, and water optical
properties which makes the Rb inversion underdetermined (Garcia
et al., 2015). This is complicated by large data volumes of modern
imaging spectrometers; exact per-spectrum radiative transfer is not
typically possible for the increasing size of detector arrays. Instead,
investigators typically use faster approximations. Dekker et al. (2011)
and Zoffoli et al. (2014) review these parameterizations and retrieval
methods. They generally conclude that there is no single best solution
to disentangle water optical and bottom effects, and that the optimal
choice depends on the availability of prior knowledge and in-situ in-
strumentation. Since multi-site, multi-region missions may not have
comprehensive or consistent ancillary data, the retrieval should be
flexible enough to incorporate whatever prior knowledge is available.
This property will be important to achieve generality for operational
use in wide-area benthic ecosystem mapping. The algorithms should be
able to function without full set of accurate constraints, conditions
under which many inversion algorithms are vulnerable to numerical
instability from ill-conditioning, instability from local minima, and high
sensitivity to input values.

We address this challenge with a probabilistic retrieval (Jay and
Guillaume, 2014), using priors to flexibly incorporate any available
ancillary data. Here optimal estimation promotes retrieval stability and
incorporates soft or hard constraints on depth or water properties. The
approach is commonplace for underdetermined inversions in terrestrial
surface studies (Lewis et al., 2012) and atmospheric sounding (Rodgers,
2000). The Bayesian methodology is particularly appropriate for the
aquatic domain (Frouin and Pelletier, 2015) since it serves as a prin-
cipled and flexible framework to incorporate complementary data from
in situ instruments. We use a classical composition of multivariate
Gaussian prior and likelihood terms as described in Lewis et al. (2012).

To further support diverse field measurements we permit water
column models using either Inherent Optical Properties (IOPs) or
Apparent Optical Properties (AOPs). There are many existing IOP-based
approaches for retrieving Rb (Dekker et al., 2011); they represent the
water column using parameters derived from physically-measurable
variables such as particle concentrations. AOP-based models may also be
advantageous for certain studies since the equipment required to mea-
sure them in situ is compact and simple to deploy. To enable AOP models,
we parameterize the water column with the spectrally-varying back-
scatter and diffuse attenuation (Maritorena et al., 1994). Following prior
studies, we represent benthic reflectance by linear mixtures of library
endmembers (Klonowski et al., 2007; Hamylton, 2011; Hedley et al.,
2004; Dekker et al., 2011; Petit et al., 2017). We extend this concept with
a similar representation for the spectrally-varying AOPs, producing a
joint model that comprised a nonlinear combination of linear mixtures.
Benthic and column parameters combine into a real-valued state vector
that is optimized independently for every spectrum, as in previous in-
version methods using IOP parameters (Dekker et al., 2011; Petit et al.,
2017; Lee et al., 1999). Here, linear mixtures capture the relevant sub-
space of spectral variability. The water column, along with depth and
bottom reflectance, determines the reflectance at the water surface.

Our study tests the hypothesis that this methodology can accurately
retrieve Rb for reef surface classification, characterizing its performance
in simulation and demonstrating its application to an airborne dataset.
We first present our proposed approach and explore performance of IOP
and AOP models in controlled simulations. Then, we evaluate the
combined system on field datasets consisting of observations by the
CAO instrument of Hawaiian coral reefs. This validation presages the
potential for larger datasets such as those of the COral Reef Airborne
Laboratory (CORAL), which will map coral reefs at many locations
worldwide.

2. Approach

We applied radiometric and spectral calibrations to yield a spectral
image of radiances at each wavelength channel, and then analyzed

each spectrum using a three step inversion of atmosphere, surface, and
water column (Fig. 1). We first corrected atmospheric effects with an
approach similar to that of Thompson et al. (2015a); Gao et al. (1993).
Specifically, we estimated atmospheric aerosol content and then in-
verted scattering and transmission effects to recover remote sensing
reflectance, Rrs, at the water surface. We next corrected for surface
effects including refraction and sunglint. Finally, we used a numerical
inversion of several water column models to estimate benthic re-
flectance. An AOP variant expanded the linear mixture idea to model
both water and bottom properties, with a real-valued ℝN vector re-
presentation of all free parameters. This enabled a single joint re-
trieval of AOPs, depth, and Rb over a wide range of conditions using
gradient descent. We used the same strategy for jointly retrieving
benthic reflectance mixtures and the scalar HOPE parameters of H, G,
B, P, and X (Lee et al., 1999). For both models, the calculation was
fast, with no need for runtime radiative transfer models, and stable,
providing a well-conditioned solution that was robust to initialization
conditions and local minima. Critically, the approach permitted
Bayesian regularization to incorporate “soft” constraints from in situ
measurements (Lewis et al., 2012).

2.1. Remote sensing reflectance

Our atmospheric correction used a modified version of the
ATmospheric REMoval (ATREM) approach by Gao et al. (Gao and
Goetz, 1990; Gao et al., 1993) and further expanded in recent work
(Thompson et al., 2015a,b). We transformed each radiance spectrum L
to an apparent reflectanceρ, normalizing by solar irradiance F and solar
zenith ϕ via:

=ρ πL
F cos ϕ( ) (1)

As in Gao et al. (1993) we disregarded coupling between absorption
and scattering, relating ρ to the remote sensing reflectance Rrs by:
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where Tg was the gaseous transmission of the atmosphere, Tu and Td
were upward and downward transmission due to scattering, S was the
spherical sky albedo and ρ0 was the path reflectance due to scattering.

The scattering terms incorporated molecular (Rayleigh) scattering
as well as particle scattering due to aerosols. We calculated the scat-
tering coefficients in advance using the 6S code (Vermote et al., 1997;
Teillet, 1989; Tanré et al., 1990) with a 20 layer model atmosphere. We
used several different aerosol particle combinations spanning a range of
optical depths: {0.76, 0.58, 0.44, 0.32, 0.25, 0.18, 0.14, 0.12, 0.03} at
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Fig. 1. Estimating Rb from remotely-sensed radiance is a multi-step process involving
many intermediate quantities.
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550 nm. At each optical depth, the algorithm assessed four particle
models: The canonical rural and marine odels from Shettle (1990), a
third option for no aerosols, and a fourth model crafted from equal parts
rural and water-soluble particles. This fourth option had no direct
precedent in literature but was close to the rural model and better fit
the data in this study. We have continued to use this aerosol set without
further modification in the subsequent years for delivered reflectance
products in all JPL airborne campaigns. Other options, such as the
parameterization in the SeaDAS algorithm (Ahmad et al., 2010), could
also be used.

We calculated reference transmissions using gas absorption coeffi-
cients derived from the Oxford Reference Forward Model (Dudhia,
2014) with the HITRAN 2012 line list (Rothman et al., 2013), and re-
sampled them with the instrument response function. We modeled
transmission of gases including H2O, O2, CO2, CH4, CO, O3, and N2O.
The gas absorption coefficients depended on pressure elevation and the
spatially-variable concentration of H2O vapor. Consequently we cal-
culated gas transmission values and aerosol coefficients for each of five
pressure elevation gridpoints spaced linearly from sea level to the
sensor altitude, and 60 candidate column water vapor amounts spaced
logarithmically from 0 to 5 cm precipitable water vapor. After these
calculations, we stored all wavelength-dependent coefficients needed
for Eq. (2) in a 4-dimensional lookup table parameterized by H2O vapor
absorption path, pressure altitude, AOD and aerosol type. At runtime,
we retrieved the atmospheric state using characteristics of each TOA
spectrum, and then found precise coefficients using bilinear interpola-
tion. Our retrieval first retrieved the pressure altitude using the depth of
the oxygen A band, as in Thompson et al. (2015a).

We estimated the aerosol depth and particle model dynamically for
each scene by exploiting the presumed reflectance of specific reference
surfaces (Guanter et al., 2008). We considered two reference types.
First, we flagged dark green vegetation with its high Normalized Dif-
ference Vegetation Index (NDVI), and required that it must have a re-
flectance close to 5% in the 450–500 nm range. Second, we recognized
deep water by a low SWIR signal, and required that it must have strong
liquid water absorption permitting at most a flat SWIR reflectance due
to sunglint. These heuristics defined intervals bounded by the lowest
and highest permissible values of ρ, denoted by ψlo and ψhi respectively.
Our values appear in Table 2, where ϵ was a conservative estimate of
measurement noise and ρ(NIR) estimated specular sunglint (Hochberg
et al., 2011):

=ρ NIR ρ ρ ρ ρ ρ( ) inf { (750), (850), (1050), (1550), (2150)} (3)

We defined the following error function:
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Values below the lower limit were heavily penalized to prevent non-
physical negative reflectances. We applied all errors to relevant pixels
of each reference type. We then performed a brute force search over all
combinations of AOD and aerosol type, applying Eq. (2) to reference
locations and used the sum error over all such pixels to select the best-
scoring combination to use for the scene.

The standard aerosol models used in MODTRAN and 6S were de-
rived from Shettle (1990), and included continental, urban, and mar-
itime mixtures. These improved the spectra, with our criterion favoring
the continental case 70% dust-like and 29% water-soluble particles.
However, we found that a mixture of 50% and 50% better removed vog
effects over the entire spectral range including the shortwave infrared.
We added this mixture to the library of options available for all fligh-
tlines. After searching over all candidate AODs, the 50%/50% model
consistently achieved the best scores and AOD consistency across si-
milar flightlines on the same day. Fig. 8 shows an example aerosol re-
trieval for a line acquired on 17 Jan 2017. The top panel shows

retrieved coefficients for Eq. (2) based on our custom aerosol model.
The bottom panel shows an example spectrum demonstrating an im-
provement in retrieved Rrs of dark water. This illustrates the dramatic
aerosol correction required for flightlines used in these experiments,
and the necessity for adaptive aerosol estimation. A subtle residual dip
persisted from 650 to 800 nm even after correction. This effect became
increasingly prominent close to land, and appeared with other sig-
natures diagnostic of scattered light from nearby terrestrial vegetation.
All aerosol effects were calculated using a midlatitude summer atmo-
spheric profile with a relative humidity of approximately 75% at sea
level.

We next found the water vapor path using a Continuum Interpolated
Band Ratio (CIBR) (Green et al., 1989) estimate of atmospheric ab-
sorption features. When the water surface was smooth and water
column was clear, there would be very little signal in these wave-
lengths. However, the estimation was still possible in cases where it
mattered most: turbid waters with suspended sediment, or in the pre-
sence of sunglint. A linearized nonnegative spectrum fit refined this
estimate as in Thompson et al. (2015b). After using these retrievals to
find a precise location in the lookup table, Eq. (2) determined Rrs above
the water surface.

2.2. Glint removal

We next transformed the remote sensing reflectance Rrs into the
reflectance below the water surface, Rrs,0, by accounting for sunglint,
refraction, and internal reflectance (Lee et al., 1998, 1999). We re-
moved specular solar glint from individual wave facets following
methods described in Hochberg et al. (2011). This exploited strong
water absorption in Near- and Shortwave Infrared wavelengths. We
attributed any nonzero reflectance after atmospheric correction to
specular glint, taken to be a uniform additive contribution. We sub-
tracted the reflectance Rrs(NIR) at long wavelengths uniformly from the
entire spectrum to remove this contamination. Our estimate used the
signal level at 1050 nm, or longer where SWIR measurements were
available. We then transformed the result to Rrs,0 using Lee et al. (1998)
Eq. 25:

= −
− +

R R R NIR
R R NIR

( )
1.562( ( )) 0.518rs

rs rs

rs rs
,0 (5)

This empirical relation presumed a spectrally-constant value for the
product of internal reflectance between the air/water and the reflective
media below with the subsurface directional variation.

2.3. Water property retrieval

Our spectroscopic retrieval of water properties and bottom re-
flectance could accommodate both AOP and IOP-based models. We will
first describe the AOP approach (Maritorena et al., 1994). Following
our convention (Table 1) of directional Rrs units, we used the con-
venient assumption that the seafloor was Lambertian, in which case the
angular reflectance was related to the Lambertian hemispherical re-
flectance Rb by a factor of π:
 = + −∞ ∞

−R R R π R e( / )rs rs b rs
KH

,0 , ,
2 (6)

Formally speaking the seafloor was not Lambertian, but the assumption
supported the ultimate objective to recover relative reflectance sig-
natures for determining seafloor composition. We represented Rrs,∞

using the backscatter coefficient bb. We extrapolated the relationship
for the diffuse reflectance of deep water, R∞=bb/(2K) to the angular
case as Rrs,∞=bb/(2Kπ). Due to the simplification of angular in-
dependence we caution against a direct interpretation of these terms as
the physical backscatter and attenuation, but retrieving them in this
fashion on a per-pixel basis proved effective for recovering bottom re-
flectance shapes. Our second approximation treated the diffuse
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attenuation curves Kd as an “operational K,” as described in Maritorena
et al. (1994). This was justified for clear waters and near-nadir viewing
angles where the attenuation term was fairly stable. Note that bb, Kd,
and Rb were dependent on wavelength and therefore vector-valued.
Retrieving depth, this gave 3n+1 free parameters for only n spectral
measurements so in principle the free parameters were under-
determined.

In practice these parameters only spanned a small subspace, so we
represented the spectrally-varying values with linear combinations of
basis vectors (Klonowski et al., 2007; Hamylton, 2011; Hedley et al.,
2004; Dekker et al., 2011; Petit et al., 2017). We posited linear mixing
models in which Kd, bb, and Rb each lay in their own subspaces defined
by matrices of library endmember spectra U combined according to
nonnegative mixing coefficients Φ. Since clear water had its own at-
tenuation, we enforced minimum values with an additive offset spec-
trum uk. The linear subspace captured the additive portion above this
floor. A similar spectrum ub set a floor value for bb. Subscripts dis-
tinguished the three mixtures:

= + = + =K u U b u U R UΦ , Φ , Φd k k k b b b b b r r (7)

The complete model used nonnegative Mixing coefficients:
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Free parameters consisted of the scalar H and the vector-valued Φb, Φk

and Φr. The columns of each U contained the linear endmembers
(Keshava and Mustard, 2002), combinations of which represented re-
trieved spectral quantities. This linear model uniquely specified shapes
of Kd and bb, but not necessarily their magnitudes. Consider a depth
perturbation by a factor δ; a valid solution leaving Rrs,0 unchanged
would be:

= = = =′ ′ ′ ′H δ H K δ K b δ b R R( ) , (1/ ) , (1/ ) ,d d b b b b (9)

This invariance decoupled H from Rb under an inversely proportional
change to backscatter and diffusion. Consequently, the linear model
used relative radiometry to recover Rb based on spectral shapes, pro-
viding resilience against magnitude errors in Kd and bb for the ultimate
objective of estimating Rb.

We drew endmembers from spectral libraries, with larger library
subsets improving representational accuracy at the cost of more free
parameters. Endmembers for bb, Kd came from simulations by the
Hydrolight radiative transfer code (Mobley and Sundman, 2001) for
different water constituents. Rb endmembers came from a database of
reflectance spectra acquired by in-situ field teams or from historical
observations of similar environments (Hochberg et al., 2003). We se-
lected endmember subsets using the Sequential Maximum Angle
Convex Cone (SMACC) method (Gruninger et al., 2004). This began
with U as a one-column matrix containing a single endmember: the
spectrum with the highest albedo. It then sequentially added columns to
U by appending the library spectrum with the largest orthogonal pro-
jection onto the subspace formed by the existing set. The process grew a
high-volume subspace within the original space spanned by all library
spectra. Reconstruction error indicated the asymptote beyond which
additional endmembers did not significantly improve the representa-
tion fidelity. We performed this process for Ub, Uk, and Ur. Fig. 2 shows
the reduction in mean RMSE reconstruction error for the entire library,
as a function of the size of the endmember subset. These curves sug-
gested that the intrinsic dimensionality of the subspace of physical
conditions was indeed much smaller than the number of measured
channels. Inflection points in the curves indicated effective cutoff points
- just two endmembers captured the variability in backscatter, while Kd

required 5–6 (Fig. 3). The bottom reflectance was typically more
complex and required 8–15 endmembers or more. Fig. 3 shows the
endmember spectra (columns of each U) used in a typical analysis. We
illustrate the complete catalog using light gray and the selected end-
members in black. Extra endmembers did not harm the retrieval results
so it would have been safe to augment the automated results with hand-
selected spectra.

While a complete library was preferable, an incomplete library
could still reproduce some spectral shapes not present in the original
set. Most prior algorithms from the literature precalculate intermediate

Table 1
Notation conventions used in the paper. Following the conventions of atmospheric and
aquatic remote sensing communities, we will use irradiance reflectance (ratios of up-
welling to downwelling irradiance) for atmospheric quantities, and angular measures
(ratios of radiance to downwelling irradiance) for quantities below the water surface.

Symbol Variable

Γ Numerator constant used for correction of air/water interface effects
ζ Denominator constant used for correction of air/water interface

effects
η Atmospheric aerosol mixture type
ρ apparent reflectance, the ratio of upwelling to downwelling irradiance
ρ0 Atmospheric path reflectance
ρW Water column path reflectance
ρ(NIR) Near-infrared or shortwave reflectance used to estimate specular

sunglint
τ Atmospheric aerosol optical depth
ϕ Solar zenith angle
ϕv Viewing zenith angle
Φk,Φb,Φr Nonnegative mixture coefficients for apparent attenuation, apparent

backscatter, and bottom
reflectance respectively. All are column vectors with one element per
library endmember.

ψlo Low extreme of expected TOA reflectances at a specific wavelength
ψhi High extreme of expected TOA reflectances at a specific wavelength
bb View-dependent apparent backscatter
κ Attenuation coefficient of (Lee et al., 1999)

D D,u
B

u
C Path elongation factors used in HOPE parameterization of (Lee et al.,

1999)
F Solar irradiance
H Depth of water column (meters)
K Diffuse attenuation
Kd View-dependent apparent attenuation
L Upwelling radiance at the sensor
Pc Probability of correct benthic type classification
RW Diffuse reflectance above the water surface (hemispherical)
R0 Diffuse reflectance below the water surface (hemispherical)
R∞ Diffuse reflectance of deep water (hemispherical)
Rrs Remote sensing reflectance above the water surface (directional, per

steradian)
Rrs,0 Remote sensing reflectance below the water surface (directional, per

steradian)
Rrs,∞ Remote sensing reflectance of deep water (directional, per steradian)
Rb Benthic reflectance (hemispherical)
S Spherical sky albedo at the surface
SW Spherical albedo of water column at the seafloor
T Atmospheric transmission
Td Downward transmission due to atmospheric scattering
Tu Upward transmission due to atmospheric scattering
Tg Transmission due to atmospheric gas absorption
TW Water column transmission
Uk,Ub,Ur Endmember libraries for apparent attenuation, apparent backscatter,

and bottom reflectance respectively. All are matrices with one row per
instrument channel and one column per endmember.

Table 2
Interval tests defining the aerosol retrieval error. ϵ is a conservative estimate of mea-
surement noise and ρ(NIR) is an estimate of sunglint.

Class Applies when Predicted
wavelengths
(nm)

ψlo ψhi

Dark vegetation (ρ(860)−ρ(660)) /
(ρ(860)+ρ(660))> 0.6

420, 500 −ϵ 0.05+ϵ

Deep water ρ(1650)<0.03 and
ρ(850)< 0.05

750, 850, 1050,
1550, 2150

ρmin−ϵ ρmin+ϵ
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values using a finite number of spectrum “options” and then select the
best. In contrast, we estimated the continuous-valued mixture fractions
simultaneously for all library spectra, for each spectrum. For this
reason, the algorithm could converge to a linear combination of library
absorption features to produce a novel spectral shape. Fig. 2 portrays
this graphically, showing minimal RMSE benefit beyond 15–20 end-
members.

We used Bayesian priors to discourage radical departures from
physically-plausible expected values. They also served as a stabilizing
influence and a rigorous way to incorporate complementary informa-
tion if available. The conditional probability of a state vector given
measurements decomposed by Bayes' rule into data likelihood and prior
terms:

 ∝P H U U U R P R H U U U P H U U U( , , , | ) ( | , , , ) ( , , , )b k r rs rs b k r b k r,0 ,0 (10)

Finding the state vector to maximize this probability amounted to
Bayesian Maximum a Posteriori (MAP) estimation (Rodgers, 2000;
Lewis et al., 2012). We used a simple model where the prior quantities
were conditionally independent and the distribution factorized:

 ∝P H U U U R P R H U U U P H P U P U P U( , , , | ) ( | , , , ) ( ) ( ) ( ) ( )b k r rs rs b k r b k r,0 ,0

(11)

It was sufficient to use Gaussian prior distributions defined by a
standard deviation σ and expected value μ. The σ weighted each free
parameter according to its expected variability, while the μ defined the
mean of the prior. These could be set directly from field data or fit using
hyperparameter learning methods (Bishop, 2006), but we found it was
not critical to provide statistically perfect prior distributions since they

amounted to a “soft” regularizer and enough measurement evidence
could overcome them. Absent measurements we opted for lenient priors
with large σ, and left the depth prior essentially unconstrained unless
there was high-quality bathymetry. We found that we could adjust the
other priors based on selected field measurements and prior knowledge
and successfully apply the same uniform settings across all the scenes in
our study. The Gaussian form was:
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Fig. 2. Larger endmember libraries enabled better reconstruction accuracy at the cost of
additional free parameters. Curves show mean RMSE reconstruction error for the libraries
of simulated bb and Kd, as well as the Rb library compiled from field spectra.

Fig. 3. Example endmembers used in nonnegative mixing model. Gray spectra show the entire library. Black spectra show selected endmembers including offsets for Kd and bb quantities.
Left: backscatter bb. Center: diffuse downward attenuation Kd. Right: Rb.
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Fig. 4. Evaluation sites in the Kona region. Dots indicate locations where in-situ Kd or
area-averaged benthic reflectance is available. Arrows indicate the first three Kd castings,
illustrated in Fig. 4. Graphic courtesy Google Earth, Google, Inc.
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Fig. 5. Bathymetry evaluation sites. Graphic courtesy Google Earth, Google, Inc.
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Here σR was the standard deviation of the reflectance measurement
noise, calculated based on deviation from nonparametrically smoothed
profile of dark NIR channels (Wasserman, 2007). Variables μH and σH
were the mean and standard deviation of a prior over depth H. Other
subscripts specified priors on specific wavelengths. For example, μKd590
and σKd590 were the prior mean and standard deviation of Kd at 590 nm.
Thus, Eq. (12) had five terms: a data likelihood combined with priors
over depth, bb at 590 nm, Kd at 450 nm, and Kd at 590 nm. We selected
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the specific wavelengths of these priors to constrain both the magnitude
and shape of the AOPs. Since most standard optimizers minimized an
error function, we used the negative logarithm resulting in a cost fAOP
that comprised additive squared error terms:
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Our retrieval first set the state vector to a random initial guess and then
applied Levenberg-Maquardt gradient descent (More, 1978; Garbow
et al., 1980) to minimize Eq. (13). We incorporated the nonnegativity
constraints directly in the Levenberg-Maquardt problem definition.

The IOP-based model used Rb linear mixture coefficients along with
the scalar HOPE parameters of Lee et al. (1999), which use a path
elongation term to capture view dependence of Rrs. The analogous cost
function fIOP used prior means μ and standard deviations σ:
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The optimization was otherwise identical, with nonnegativity con-
straints incorporated into the Levenberg-Maquardt problem definition.

2.4. Simulation method

We used simulations to demonstrate the correctness of the retrieval
approach and compare performance of AOP and IOP versions under
different conditions. We defined a virtual reef of random measure-
ments, each based on pairs of library spectra of coral, sand, and algae
spectra observed at nadir viewing angle and 25° solar zenith. We mixed
library spectra randomly but ensured one constituent dominated above
a 90% areal coverage fraction. That component defined the class of the
Rb spectrum. We then simulated water columns for clear and turbid
simulations using the Hydrolight radiative transfer code (Mobley and
Sundman, 2001). A “clear water” case used a Chlorophyll concentration
of 0.1 mg m−3, suspended sand of 0.1 g m−3, and a CDOM absorption

coefficient of 0.05 at 400 nm. The “turbid” case used a Chlorophyll
concentration of 0.1 mg m−3, suspended sand of 0.2 g m−3, and a
CDOM absorption coefficient of 0.11. All priors were set to uninformed
values (extremely large σ). We applied both IOP and AOP para-
meterizations, initializing the IOP version according to heuristics from
Lee et al. (1999) and initializing the AOP version to uniform coeffi-
cients. We assessed performance with and without measurement noise.
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Table 3
Atmospheric correction results for flight days in the CAO Hawaii campaign. Water: The
number of water pixels used in aerosol estimation. Veg: The number of dark vegetation
pixels used in aerosol estimation. Vis: estimated visibility in kilometers. Error: mean
improvement in the reflectance error score (Eq. (4)), as a fraction of that incurred by
default atmosphere assumptions.

Date # Water # Veg Vis (km) Error

20160106 3.8E+07 1.5E+07 80.8 0.423
20160111 9.2E+06 1.9E+04 9.0 0.284
20160117 3.1E+07 8.8E+05 16.6 0.185
20160119 4.4E+07 3.5E+06 16.2 0.233
20160122 1.1E+08 1.9E+06 13.0 0.260
20160123 1.5E+07 8.7E+05 15.0 0.056
20160126 6.4E+06 3.0E+06 25.0 0.199
20160127 4.3E+06 6.9E+05 300.0 0.415
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Fig. 9. Site I map products. Top panel: Remote sensing reflectance. Middle panel:
Retrieved depth (with a strong prior based on SHOALS LIDAR). Spectra A, B, and C
correspond to representative depths referenced in Fig. 10. Bottom panel: Retrieved Rb

indicating diverse surface reflectances.
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The noisy case perturbed the Rrs by a white Gaussian distribution ap-
propriate for the CAO instrument. We estimated noise with a non-
parametric approach (Brown et al., 2007) based on the differences
between neighboring channels of the spectrally-flat near infrared re-
gion. It revealed a standard deviation of 0.0002 for typical scenes.

We applied this procedure over 5000 trials at varying depths, cal-
culating two metrics to score Rb retrieval accuracy. The first was a
spectral angle SA R R( , )b b defined by the dot product between the re-
trieved and actual Rb vectors:


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This quantified the match between spectrum shapes (Yuhas et al.,
1992). We also used a task-specific score, the accuracy Pc of a su-
pervised classifier trained to categorize benthic coverage type. Here Pc
represented the total probability of a correct class assignment
(Stehman, 1997), given as Pc=pcoral+palgae+psand where pcoral, palgae,
and psand represented the probabilities that a spectrum was of the de-
signated class and correctly classified. The total score would be unity
for a perfect classifier. We applied a principal component reduction to
20 dimensions followed by Linear Discriminant Analysis (Hochberg
et al., 2003). This regularly achieved above 99% accuracy, out-
performing alternative classifiers like decision forests (Breiman, 2001)
for this dataset size. We evaluated performance with held-out fractions
using 5-fold cross validation.

2.5. Field experiment method

Airborne remote sensing data were acquired in January 2016, co-
inciding with our field campaign, using the Carnegie Airborne
Observatory, or CAO (Asner et al., 2012), which includes a high-fidelity
Visible-to-Shortwave Infrared (VSWIR) imaging spectrometer. We col-
lected the VSWIR image data over the two study areas from an altitudes
of 1000 m and 2000 m above ground level (AGL) at an average flight
speed of 55–60 m s−1. The CAO VSWIR spectrometer measures spectral
radiance in 427 channels spanning the 380–2510 nm wavelength range

in 5 nm increments (full-width at half-maximum). The VSWIR has a 34°
field of view and an instantaneous field of view of 1 mrad. At 1000 m
and 2000 m AGL respectively, the VSWIR data collection provided
1.0 m and 2.0 m ground sampling distance, or pixel size. The VSWIR
data were radiometrically corrected from raw DN values to radiance (W
m−2 sr−1 nm−1) using a flat field correction, radiometric calibration
coefficients and spectral calibration data collected in the Carnegie In-
stitution's airborne science laboratory.

Precise geo-orthorectification of the VSWIR data was achieved by
fusion with the CAO Light Detection and Ranging (LIDAR) system. The
LIDAR has a beam divergence set to 0.5 mrad, and was operated at
200 kHz with 17° scan half-angle from nadir, providing swath coverage
similar to the VSWIR spectrometer. The LIDAR point density was two
laser shots m−2, or 2–8 shots per VSWIR pixel. The LIDAR data were
combined with an embedded high-resolution Global Positioning
System-Inertial Measurement Unit (GPS-IMU) data to produce a cloud
of georeferenced point data. Digital sea and land surface models (DSM)
were calculated using the method described in Asner et al. (2007). The
standardized GPS pulse-per-second measurement was used to precisely
co-locate VSWIR spectral imagery to the LIDAR data using the tech-
nique detailed by Asner et al. (2012). The VSWIR imagery was then
orthorectified to the LIDAR DSM. We analyzed all radiance data using
standard atmospheric correction methods, using both deep water and
dark vegetation features as in Table 2.

We selected two specific study areas near the Kona region (Fig. 4)
for in-depth study. The two areas were each overflown three times on
17 January 2016 at 19:10 h, 19:21 h, and 19:30 h UTC - approximately
10:30 h local time. Meanwhile, in-situ survey teams deployed a Bio-
spherical Instruments, Inc. PRR-800 Profiling Reflectance Radiometer
(Biospherical Instruments Inc., 2011) at several geotagged sites to
profile upwelling radiance and downwelling irradiance at multiple
depths and wavelengths. This permitted direct calculation of the diffuse
attenuation and backscatter. Additionally, area-averaged bottom re-
flectance spectra were acquired at two geo-tagged locations over an 8 m
quadrat. Atmospheric conditions were observed from the field and from
the air to be sub-optimal, with heavy vog (volcanic smog) causing
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significantly reduced visibility over the study site. To provide an in-
dependent dataset for depth validation, a second flightline over the
Hawaii coast acquired VSWIR airborne data on 27 January 2016 at
20:49 h UTC under clear-sky conditions. We reprojected this dataset,
and the original vog-contaminated flightlines used for reflectance re-
trievals, to bathymetric LIDAR data acquired in 2001 from the SHOALS
instrument (Wozencraft and Lillycrop, 2002). We studied three sub-
regions that had reasonable spatial separation, good depth contrast,
good overlap between the two instruments, and distinctive depth fea-
tures (Fig. 5). Together, the five sites (labeled I–V) constituted two
separate and distinct experiments isolating performance of the benthic
reflectance and depth retrieval algorithms.

We applied our AOD retrieval method, setting priors over Kd based
on 11 in-situ castings. These indicated clear water, with Kd values less
than 0.05 at 450 nm. For the depth retrieval experiment, we set very
lenient priors over depth, amounting to essentially no constraint. For
the bottom reflectance retrieval, we set priors over depth directly using
LIDAR bathymetry, with a mean equal to the known depth at each pixel
and a tight standard deviation of 0.01. This caused the depth to be
effectively fixed at the known value.

The CAO dataset, combined with benthic LIDAR and in-situ ob-
servations, provided overlapping information to bound the accuracy of
the spectroscopic analysis chain. We analyzed the atmospheric correc-
tion for agreement with the visual observations of atmospheric condi-
tions in pilot logs and ground observations of haze and vog. The spectra
themselves were an independent standard; known properties of surface
reflectance (the standards of Table 2) score the aerosol model's success
in removing scattering across all wavelengths. For the benthic re-
flectance experiment, three different in-water sampling locations
overlapped with the airborne datasets providing multiple comparisons
across different overflights. We co-registered the in-water and retrieved
measurements to compare accuracy directly. For the depth retrieval
experiment, the airborne LIDAR bathymetry data served as a bench-
mark standard.

3. Results

3.1. Simulation results

The simulations showed the performance of both AOP and IOP
models in different conditions. Fig. 6 (top row) shows classification
accuracy for noise free, clear, and turbid cases. Both showed a smooth
loss of accuracy as depth increased. The loss of accuracy was faster for
higher levels of suspended particles. In the difficult conditions the de-
gradation accelerated significantly beyond approximately 6–8 m depth
and left very little information beyond 10 m. Such findings corrobo-
rated previous studies with comparable instruments that found re-
trievals degrade significantly beyond this depth, e.g. Zoffoli et al.
(2014). Nevertheless, for clear-water conditions and shallow turbid
environments, accuracies above 75% could be operationally useful for
mapping benthic coverage type. The high sensitivity to suspended
particles suggested that such campaigns' success would hinge on local
water conditions.

Fig. 6 (middle row) shows the results for spectral shape matching.
Interestingly the AOP and IOP versions showed some minor divergence
in performance, with the AOP version providing better accuracy in both
clear and turbid water. Note that the spectral angle scores for turbid
water decayed much more rapidly than the classification scores. To
demonstrate how this could occur, Fig. 7 shows two examples from
simulation. The dark lines in each panel portray the actual spectrum
and the gray lines show the retrieved estimate. The left panel's spectral
angle of 0.05 is a “success” case typical of shallow and clear water in
which slopes, magnitudes, and fine spectral features all aligned. The left
panel with a spectral angle of 0.15 shows discrepancies in the slopes
and vertical offsets of the two spectra. However, the finer spectral
features and profiles were preserved, underscoring that poor spectral

matches did not necessarily translate to a loss of interpretability or
classification performance. Note that the spectral angle scores for turbid
water decayed much more rapidly than the classification scores.

Finally, Fig. 6 (bottom row) shows the accuracy of retrieved depth
for each model. The IOP approach tracked the true depth better than
the AOP method, possibly due to the indeterminacy noted above in the
AOP's retrieved magnitude for Kd, bb, and depth. Overall, the IOP
achieved superior depth retrieval while the AOP provided more accu-
rate Rb spectra. Naturally this simplified experiment in a controlled
setting could not perfectly predict performance in field conditions, but
it suggested how the different parameterizations affected our algor-
ithm's ability to invert the full radiative transfer model.
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Fig. 11. Site II map products. Top panel: Remote sensing reflectance. Middle panel:
Retrieved depth (with a strong prior based on SHOALS LIDAR). Bottom panel:
Retrieved Rb.
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3.2. Field experiment results

Table 3 summarizes atmospheric correction results for the 59
flightlines in the CAO Hawaii campaign. The second and third columns
show the number of water and vegetation pixels available for aerosol
estimation. The fourth column reports average visibility in kilometers
across all flightlines as retrieved by the Rrs retrieval algorithm. The
“Error” column expresses the mean improvement in the reflectance
error score after applying aerosol correction (Eq. (4)), expressed as a
fraction of the error incurred by the default atmosphere with Rayleigh
scattering only.

Fig. 9 shows the Rrs, Depth, and Rb maps for area I. Foam and land
pixels were filtered from the retrieval results using NIR reflectance
thresholds. Arrows indicate three representative locations at different
depths: (A) 13.6 m, (B) 9.4 m, and (c) 7.7 m. Their spectra appear in
Fig. 10. The top row of Fig. 10 shows the measured and modeled Rrs at
each location, indicating a good model fit in all cases. The bottom row
shows the corresponding retrieved Rb spectra. We formed 1σ error bars
by translating Rrs measurement noise into the noise-equivalent Rb as-
suming the depth and water properties are correct. This was an opti-
mistic lower bound on Rb error. Our measurement noise estimate used
the observed Rrs in smooth, dark NIR channels as described above. The
Rb estimate in long wavelengths was most accurate for shallow water,
and degraded quickly beyond 10 m. The retrievals revealed character-
istic signatures of algae and coral, such as absorption features at

540 nm and 590 nm respectively. Fig. 11 shows similar Rrs, Depth, and
Rb maps for Area II. The benthic reflectance map shows scene content
that is broadly consistent with Area I. It contains shallow near-shore
area dominated by algae, trending to a mixture of sand and reef at
deeper locations.

Next, Fig. 12 compares the retrieved area-averaged benthic re-
flectance spectra at the in-situ sampling locations. Here, errorbars in-
dicate the full extent of the data over three flightlines that cover the
area. Several caveats apply to this comparison. First, in order to match
the in situ acquisition process, these spectra represent wide-area
averages over 10 × 10 m windows. This spatial averaging smoothed
any fine spectral features. Additionally, there was also an un-
characterized error associated with the in situ spectroscopic reflectance,
a difficult measurement from a hand-held underwater instrument. Fi-
nally, both in situ and remote area averages lay at the edge of a deep
underwater ridge. Since the precise localization underwater was chal-
lenging, natural error and variability might yield significant differences
in the resulting optical and benthic properties. These caveats aside, the
overall magnitude and slope of the two measurements matched to
within 1–2% of absolute reflectance (slightly more in the brightest
case), providing a check that the reflectances are reasonable matches to
ground reference data.

Fig. 13 shows the Kd retrieval for a representative subset of the
first three castings, with locations illustrated in Fig. 4. The tight
agreement here was expected, since the Kd values were strongly
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Fig. 12. Comparison of remote and in situmeasurements of the average Rb spectrum over a 10 m2 area. Thick lines indicate the in situ data. Error bars show the 95% confidence for remote
measurement based on root-sum-squared combination of Rrs measurement noise and spectrum variance within each 10×10 averaging zone. This conservative error estimate excludes
errors in water column constituents. Error in the in-situ measurement is not characterized.

450 500 550 600 650

Wavelength (nm)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
d 

(m
-1

)

Kd 1

450 500 550 600 650

Wavelength (nm)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kd 2

450 500 550 600 650
Wavelength (nm)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kd 3 

K
d 

(m
-1

)

K
d 

(m
-1

)

Fig. 13. Comparison of remote and in situ measurements of Kd. The dashed line indicates a slope of unity. The first three in situ measurement sites appear as dark ’x’ symbols. Remote
retrievals are averages of 2 scenes for the center and right panels, where multiple overpasses were available.

D.R. Thompson et al. Remote Sensing of Environment 200 (2017) 18–30

27



constrained by the priors from in situ measurements. Nevertheless,
the result provided confidence that the retrieval incorporated this
soft constraint and produced an explanation consistent with all
available information.

Fig. 14 shows the results of the depth retrieval experiment, with
different panels for bathymetric LIDAR, spectroscopic depth retrievals,
and scatterplot comparisons at each of three sites. Here, depth was
unconstrained and the variability indicates the accuracy in tabula rasa
retrievals with fully uninformed priors. In the scatterplots the thick

black line indicates a slope of unity. The shape and position of depth
features were similar for both instruments. The scatterplots indicate a
good correlation between the two depth retrieval methodologies, with a
scatter of approximately 1–2 m in shallow water. This could have been
related to surface effects or inteference due to breaking waves, foam
and other interference near shore. This scatter and discrepancy gen-
erally increased at greater depths, consistent with intuition and our
simulation results.
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Fig. 14. Comparison of depth retrieval using LIDAR and spectroscopy.

D.R. Thompson et al. Remote Sensing of Environment 200 (2017) 18–30

28



4. Discussion and conclusion

These field experiments demonstrate wide-area mapping of Rb at
high spatial and spectral resolution, in agreement with correlated in situ
and remote measurements. They include the complete analysis chain
from radiance at the sensor to an estimate of bottom reflectance for
determining the condition of shallow-water ecosystems.
Fundamentally, we demonstrate a Bayesian retrieval methodology that
permits fast but principled synthesis of prior knowledge and measure-
ment data for application across wide areas with varied ancillary
measurements. Statistical priors permit a stable retrieval of reflectance
mixture coefficients and optical properties, even when initialized ran-
domly. Other notable aspects include the use of in-scene reflectance
heuristics to estimate atmospheric aerosols, and water column models
based on linear mixtures of bottom reflectance and Apparent Optical
Property components that are simple to measure in situ. Given the very
challenging atmospheric conditions of the CAO overflights, the results
for depth and Rb compare reasonably with in situ measurements. The in
situ reflectance consists of wide area averages acquired with some un-
certainty, and consequently does not alone prove or disprove the ability
to retrieve fine-scale spectral shapes. However, single-pixel spectra of
Fig. 10 do show more distinctive shapes, and the simulations show the
retrieval accuracy is comparable to other techniques in current use. One
interesting new finding is that, in simulation at least, perfect depth
retrieval is not a prerequisite for accurate retrieval of Rb. When in an-
cillary data is not available, the AOP parameterization leaves some
indeterminacy in the depth/AOP magnitudes but still manages to ac-
curately retrieve Rb using spectral shape information.

Both atmospheric and water column conditions can complicate the
retrieval. Prior work has recognized the challenge of residual atmo-
spheric effects and glint, including Goodman et al. (2008) and Brando
et al. (2009); they affect both AOP and IOP formulations. Heavy aerosol
loading was a particular challenge for this field campaign. Certainly,
the extreme conditions attempted here, with volcanic fog and estimated
Aerosol Optical Thickness from 0.32 to 0.44, push the frontier of fea-
sible retrieval scenarios. The simulations also underscore the im-
portance of water column clarity for effective classification, particularly
at depth. This appears at least as important as atmospheric conditions,
and suggests that the fundamental challenge for wide area mapping
may simply be catching the rare instance where both skies and water
are favorable. Orbital sensors providing regular repeat coverage may be
the best option to achieve this in the future.

The technique is suited to airborne imaging spectrometers such as
PRISM (Mouroulis et al., 2008) and future orbital imaging spectrometer
missions (Mouroulis et al., 2016). The AOP approach is one of many
different options for the water column model, each with unique ad-
vantages and disadvantages. However, the general premise of lever-
aging Rb library mixtures to reduce the number of free parameters could
apply to any water column model. Our formulation can incorporate
prior knowledge in a rigorous statistical fashion through Bayesian
priors that incorporate the unique measurement certainty of each de-
ployed instrument.

Future work will continue refining the approach. A natural exten-
sion would be to permit retrieval of spectra that are not strict linear
combinations of library Rb endmembers. A library of 5–10 endmembers
should already provide significant flexibility for modeling unusual
spectral shapes. However, it is possible — particularly for very high
SNR instruments — that subtle unanticipated shifts in absorption peak,
slope or position of certain features would not be captured. A possible
solution would be to begin with an initial retrieval using the standard
approach above, obtain depth and water column properties, and then
re-derive Rb independently for each wavelength using the algebraic
relationship in Eq. (6).

Another natural extension would be to interpret the retrieved li-
brary mixing fractions directly as areal mixtures to perform a bottom
cover type classification, as in recent work by Petit et al. (2017). We

note that there is nothing in our model which guarantees this inter-
pretability, since depending on the retrieval could explain an observa-
tion as a combination of two spectra which incidentally provide the
correct signature but are not actually present at the bottom. The Rb

could thus be correct, even if the mixing fractions were not. Future
work will evaluate the interpretability of these fractions; prior work in
terrestrial ecology (Roberts et al., 2015) suggests that the spectroscopic
measurement provides sufficient constraint to prevent nonphysical
combinations. Investigators could easily create scene-specific libraries
around their unique investigation objectives. Simply changing spectrum
matching error metrics might also improve Rb class fidelity (Petit et al.,
2017).
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