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Freshwater ecosystems underpin global water and food security, yet are some of the most endangered ecosys-
tems in the world because they are particularly vulnerable to land management change and climate variability.
The US National Research Council's guidance to NASA regarding missions for the coming decade includes a
polar orbiting, global mapping hyperspectral satellite remote sensing mission, the Hyperspectral Infrared Imager
(HysplIRI), to make quantitative measurements of ecosystem change. Traditionally, freshwater ecosystems have
been challenging to measure with satellite remote sensing because they are small and spatially complex, require
high fidelity spectroradiometry, and are best described with biophysical variables derived from high spectral res-
olution data. In this study, we evaluate the contribution of a hyperspectral global mapping satellite mission to
measuring freshwater ecosystems. We demonstrate the need for such a mission, and evaluate the suitability
and gaps, through an examination of the measurement resolution issues impacting freshwater ecosystem mea-
surements (spatial, temporal, spectral and radiometric). These are exemplified through three case studies that
use remote sensing to characterize a component of freshwater ecosystems that drive primary productivity. The
high radiometric quality proposed for the HyspIRI mission makes it uniquely well designed for measuring fresh-
water ecosystems accurately at moderate to high spatial resolutions. The spatial and spectral resolutions of the
HyspIRI mission are well suited for the retrieval of multiple biophysical variables, such as phycocyanin and
chlorophyll-a. The effective temporal resolution is suitable for characterizing growing season wetland phenology
in temperate regions, but may not be appropriate for tracking algal bloom dynamics, or ecosystem responses to
extreme events in monsoonal regions. Global mapping missions provide the systematic, repeated measurements
necessary to measure the drivers of freshwater biodiversity change. Archival global mapping missions with open
access and free data policies increase end user uptake globally. Overall, an archival, hyperspectral global mapping
mission uniquely meets the measurement requirements of multiple end users for freshwater ecosystem science

and management.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

the wetlands, marshes, swamps and bogs associated with these water
bodies. Freshwater systems provide multiple services to both humans

1.1. Freshwater ecosystems in the Anthropocene

Increasing pressure for human water, food and energy security make
understanding freshwater ecosystem processes and managing sustain-
able ecosystem services critical. Freshwater is a fundamental resource
for human life, and the services provided by surface freshwater ecosys-
tems underpin global water security, food security and economic pro-
ductivity (Hanjra & Qureshi, 2010). Freshwater ecosystems occur in
freshwater systems including lakes, ponds, streams and rivers, and in
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and the environment, including 1) provisioning water for consumption,
energy, and transportation; 2) cultural amenities such as recreation,
tourism and religious significance; 3) maintaining water quality, flood
and erosion control; and 4) supporting biodiversity and ecosystem
function such as nutrient and carbon cycling and primary production
(Aylward et al., 2005).

The intensifying exploitation of freshwater resources to meet the
water, energy and food needs of a rapidly growing global population
often places biodiversity and other ecosystem functions at risk. The
degradation of these services is exacerbated by climate change and
variability. Surface freshwaters are among the most anthropogenically
modified ecosystems on Earth (Carpenter, Stanley, & Vander Zanden,
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2011), and are exceptionally vulnerable to climate change (Woodward,
Perkins, & Brown, 2010). Although freshwater systems occupy a relatively
small portion of the Earth's surface (~2-3%; Downing et al., 2006;
Raymond et al., 2013), freshwater ecosystems have a disproportionate
role in driving global biodiversity and ecological function. Freshwater eco-
systems support 10% of the world's animal species, and nearly 35% of all
vertebrate species (Stendera et al., 2012). Unfortunately, freshwater eco-
systems have the highest rates of biodiversity loss globally, and may be
the most endangered ecosystems in the world (Dudgeon et al., 2006).

Freshwater ecosystems are also increasingly recognized as an im-
portant factor in the global carbon cycle. Carbon emissions from surface
inland waters are estimated to be on the same order of magnitude as
carbon emissions from deforestation or carbon uptake from oceans
(Tranvik et al.,, 2009). Yet inland waters are poorly accounted for in
global estimates of terrestrial net primary production (Raymond et al.,
2013). Wetlands are widely recognized as one of the most important
sources of global methane emissions, but also sequester large amounts
of carbon dioxide in the soils. The relative role of freshwater ecosystems
in the carbon cycle and how that role will change with increasing pres-
sure from human activity and changing climate is poorly understood
and requires significant study (e.g., Bridgham, Moore, Richardson, &
Roulet, 2014; Mitsch et al., 2013).

1.2. Observation needs

To improve understanding of global freshwater responses to multi-
ple stressors, valid, standardized and accurate data are needed. In
collecting data in the field, there are logistical, operational and financial
considerations that usually impede freshwater ecosystem measure-
ments. In situ measurements and monitoring provide detailed informa-
tion pertinent to understanding key ecosystem characteristics, forming
the basis of long term monitoring records needed to assess status and
identify trends. Unfortunately, in situ approaches are limited to point-
based representations of complex and dynamic systems. Furthermore,
in situ measurements in freshwater systems are also limited by logistics
such as access, cost and timing, which all restrict systematicity. Satellite
remote sensing can complement in situ freshwater ecosystem sampling.

The potential of satellite remote sensing for freshwater inventory
and monitoring has long been recognized by the scientific community;
optical satellite datasets have been used to detect freshwater systems
for decades (e.g., Carpenter & Carpenter, 1983; Lulla, 1983; Strong,
1974), as have active remote sensing datasets (Melack, 2004). Stand-
alone radar data or radar used in conjunction with optical remote
sensing data have been particularly useful for wetland and flood plain
detection (Alsdorf et al., 2000; Henderson & Lewis, 2008; Hess,
Melack, Novo, Barbosa, & Gastil, 2003; Silva, Costa, & Melack, 2010),
lake detection, surface and volume estimates (Crétaux et al., 2011;
Strozzi, Wiesmann, Kadb, Joshi, & Mool, 2012). Traditionally, however,
satellite remote sensing of freshwater systems has been limited by sen-
sor technology; current and past missions have not provided the mea-
surement resolutions needed to fully resolve freshwater ecosystem
properties and processes.

Optical satellite remote sensing of Earth's ecosystems has helped to
transform our understanding of ecosystem change (Cohen & Goward,
2004; Wulder, Masek, Cohen, Loveland, & Woodcock, 2012). High
spectral resolution (hyperspectral) remote sensing, or imaging spec-
troscopy, provides measurements across hundreds of discrete bands,
forming a contiguous spectrum that enables detection and identifica-
tion of earth surface materials, which makes quantitative measure-
ments of ecosystem properties and processes surpassing other remote
sensing modalities (Bioucas-Dias et al., 2013; Green et al., 1998; Ustin,
Roberts, Gamon, Asner, & Green, 2004). Archival, polar orbiting, global
mapping satellite missions make systematic measurements over years
to decades, providing a time series of consistently measured data to as-
sess system condition, identify change, and understand process for a
limited, but important suite of biophysical variables.

Freshwater systems may be small and spatially complex, requiring
moderate to small pixel sizes. Discriminating wetland vegetation re-
quires moderate to high spatial and spectral resolutions in both visible
and shortwave infrared regions (Hestir et al., 2008). Inferring ecosystem
process such as watershed runoff, environmental flows, lake currents
and stratification, and inundation processes that drive habitat connec-
tivity, sediment and nutrient discharge, algal blooms, and wetland
greenhouse gas emissions from space requires both high spatial and
temporal resolutions (Kutser, Metsamaa, Strombeck, & Vahtmade,
2006; Song, Xu, Tian, & Wang, 2009). Measuring water column condi-
tions requires satellite measurements to have high spectral resolution
and the sensitivity to resolve small changes in water-leaving radiance
relative to the noise of the sensor and the atmosphere (i.e., high radio-
metric resolution and high signal to noise ratio; Hu et al., 2012). Several
reviews published over the past decades have summarized the applica-
tions, potential and limitations of satellite remote sensing for freshwater
systems based on these resolution limitations (Adam, Mutanga, &
Rugege, 2010; Carbonneau & Piegay, 2012; Dekker & Hestir, 2012;
Heumann, 2011; Klemas, 2013a,b, 2014; Matthews, 2011; Mertes,
2002; Odermatt, Gitelson, Brando, & Schaepman, 2012; Ozesmi &
Bauer, 2002).

1.3. The Hyperspectral Infrared Imager (HyspIRI) mission

The United States National Research Council (US NRC) highlights the
need for a global mapping satellite mission that deploys an imaging
spectrometer to make much needed global observations of ecosystem
change (National Research Council, 2007). The US NRC's guidance to
NASA recommends the development of the Hyperspectral Infrared Im-
ager (HysplIRI) to address this need. The proposed mission will make
optical measurements in over 200 bands in the visible, near and short-
wave infrared, and will have multiple thermal infrared bands. HyspIRI
is planned to have an equatorial revisit time of ~19 days, with a
60 m pixel resolution (Devred et al., 2013). To the best of our knowl-
edge, there is no other current or planned mission that could deliver ar-
chival, regularly repeated measurements with the high spectral and
spatial resolutions needed to address freshwater ecosystem science
and management challenges. In this study, we evaluate the potential
contribution of a hyperspectral global mapping satellite mission to mea-
suring freshwater ecosystems, focusing on passive optical remote sens-
ing in the visible, near and shortwave infrared regions. We demonstrate
the need for such a mission, and evaluate the suitability and gaps of such
a mission through an examination of the measurement resolution (spa-
tial, temporal, spectral and radiometric), exemplified through three case
studies that use remote sensing to characterize a component of fresh-
water ecosystem primary production.

2. Observing freshwater systems from space
2.1. Freshwater ecology in remote sensing literature

As sensor technologies have improved both in measurement fidelity
and spatial and spectral resolutions, the application of remote sensing to
freshwater systems has also increased. Since 2000, the portion of aquat-
ic applications in remote sensing publications has shown a significant
increasing trend of 4% of the mean portion of remote sensing publica-
tions per year (Mann-Kendall test for trend: T = 0.58, p = 0.004;
Fig. 1).

2.2. Freshwater resource management and satellite remote sensing
products

Based on a survey of US Environmental Protection Agency person-
nel, Schaeffer et al. (2013) described the primary barriers to water qual-
ity managers adopting satellite products. These include 1) actual and
perceived cost, both in terms of cost of data and cost for accessing
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Fig. 1. Total number of publications by year (light gray bars) from a Web of Science data-
base search for “remote sensing” as a topic, under the research area “remote sensing” and
the research domain “science and technology.” The portion of aquatic remote sensing pub-
lications was determined by querying this database return for the topics “aquatic,” “lake,”
or “wetlands.” There is a significant increasing trend of 4% of the mean portion of publica-
tions per year.

personnel with expertise in remote sensing; 2) confidence in product
accuracy; 3) satellite data continuity, and 4) programmatic support for
training personnel and new software applications. Despite the presence
of these barriers, there are clear examples of high spectral resolution
remote sensing being applied to management of water quality
(e.g., Bresciani, Stroppiana, Odermatt, Morabito, & Giardino, 2011), wet-
lands (e.g., Rebelo, Finlayson, & Nagabhatla, 2009), and aquatic invasive
alien species (e.g., Santos et al., 2009). While high spectral resolution
data cannot address all of the barriers to management adoption of

Table 1
Biophysical properties estimable from passive optical remote sensing.

satellite products, algorithms for retrieving the biophysical properties
of freshwater ecosystems are mature, and can support high accuracy
products at low cost to the end-user. Satellite and hyperspectral remote
sensing have long been used for wetland classification and evaluation
(e.g., Artigas & Yang, 2007; Hardisky, Gross, & Klemas, 1986; Lulla,
1983; Pefiuelas, Gamon, Griffin, & Field, 1993; Ramsey & Rangoonwala,
2011; Schmidt & Skidmore, 2003; Zomer, Trabucco, & Ustin, 2009). And
while algorithms for freshwater water quality have been successfully
applied to satellite and hyperspectral remote sensing data for decades
(e.g., Dekker, Malthus, & Goddijn, 1992; Dekker, Malthus, Wijen, &
Seyhan, 1992; Hoogenboom, Dekker & Althius, 1998; Hoogenboom,
Dekker & De Haan, 1998; Kutser, Herlevi, Kallio, & Arst, 2001; Pierson &
Strémbeck, 2001; Strong, 1974), standard water quality products are
mainly limited to ocean color products due to limitations imposed
primarily by sensor characteristics, which are discussed below in the
sections that follow.

2.2.1. Measuring freshwater ecosystem biophysical properties

Biophysical properties estimable from passive optical remote sens-
ing are summarized in Table 1. Several reviews have been published
recently that describe and evaluate algorithms for wetland detection
and ecological evaluation (Adam et al., 2010; Klemas, 2011, 2013a,b,
2014; Mertes, 2002; Ozesmi & Bauer, 2002; Rundquist, Narumalani, &
Narayanan, 2001; Silva, Costa, Melack, & Novo, 2008), and water quality
(Blondeau-Patissier, Gower, Dekker, Phinn, & Brando, 2014; Devred
et al., 2013; Kutser, 2009; Matthews, 2011; Odermatt et al., 2012;
Ogashawara, Mishra, Mishra, Curtarelli, & Stech, 2013; Zhu et al.,
2014). We refer readers to these reviews and references therein for a
more complete description and evaluation of published algorithms.

A common thread among these reviews is that the algorithms that
perform best are those that exploit hyperspectral data, because these
datasets have narrow spectral bands in positions that focus on key
biophysical properties of wetlands and the water column. HyspIRI will
provide the narrow bands needed to make most of the biophysical esti-
mates. For instance, detecting plant or phytoplankton species may be

Biophysical properties Example references

Plant canopy (riparian, emergent, floating and submerged)
Plant species and distribution

Giardino, Bartoli, Candiani, Bresciani and Pellegrini (2007a), Hestir et al. (2012), Hestir et al. (2008), Khanna,

Santos, Hestir, and Ustin (2012), Khanna et al. (2011), Underwood et al. (2006), and Zomer et al. (2009)

Plant functional type
Chlorophyll-a (CHL)
Other photosynthetic & accessory pigments
Foliar chemistry
Photosynthetic pathways
Phenology and stress
Biomass
Carbon flux

Water Column
Chlorophyll-a (CHL)
Other photosynthetic & accessory pigments
Phytoplankton functional type (PFT)
Harmful algal blooms
Water surface extent
Water depth (bathymetry), channel morphology & benthic
habitat
Total suspended matter (TSM)
Suspended sediment concentration (SSC)
Non-algal particulate matter/tripton (TR)
Suspended inorganic particulate matter (SPIM)
Colored dissolved organic matter (CDOM)
Dissolved organic carbon (DOC)
Vertical attenuation coefficient (Kd)
Secchi disk depth/turbidity

Byrd et al. (2014)?

Garbulsky et al. (2011)?

Dronova et al. (2012), Santos et al. (2012), and Ustin and Gamon (2010)

Gitelson and Merzlyak (1996) and Richardson, Duigan, and Berlyn (2002)

Pefiuelas et al. (1993) and Sims and Gamon (2002)

LaCapra, Melack, Gastil, and Valeriano (1996), Pefiuelas et al. (1993), Ustin (2013), and Ustin et al. (2009)
Garbulsky, Pefiuelas, Gamon, Inoue, and Filella (2011), Pefiuelas et al. (1993), and Santos et al. (2012)
Andrew and Ustin (2009), Dronova, Gong, and Wang (2011), and Khanna et al. (2012)

Gitelson et al. (2008), Gons, Auer, and Effler (2008), Matthews (2011)?, and Odermatt et al. (2012)?
Gons et al. (2005) and Simis et al. (2005)

Devred et al. (2013)?

Kutser (2009)?, Matthews (2011)%, and Odermatt et al. (2012)?

Amarnath (2014) and Vanderbilt et al. (2007)

Legleiter, Roberts, Marcus, and Fonstad (2004) and Legleiter and Roberts (2005, 2009)

Devred et al. (2013)? Matthews (2011)? and Odermatt et al. (2012)?

Bowers and Binding (2006), Doxoran, Froidefond, Lavender, and Castaing (2002), and Mertes (2002)

Devred et al. (2013)? Matthews (2011)? and Odermatt et al. (2012)?

Devred et al. (2013)?% Matthews (2011)? and Odermatt et al. (2012)?

Matthews (2011)%, Odermatt et al. (2012)?, and Zhu et al. (2014)?

Kutser et al. (2005), Giardino, Brando et al. (2007), and Hestir, Brando, Campbell, Dekker, and Malthus (2015)
Devred et al. (2013)? and Odermatt et al. (2012)?

Giardino, Brando et al. (2007), Kutser et al. (2001), Nelson, Soranno, Cheruvelil, Batzli, and Skole (2003), and

Thiemann and Kaufmann (2002)

Sediment, carbon and nutrient loads, Organic & inorganic
micro-pollutants, and dissolved oxygen

Bjerklie, Lawrence Dingman, Vorosmarty, Bolster, and Congalton (2003), Brodie et al. (2010), Del Castillo and
Miller (2008), Mertes (2002), Mertes and Warrick (2001), and Muller, DECamps, and Dobson (1993)

2 Indicates a recent review or study with useful references contained within.
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difficult, even with hyperspectral data. However, species with similar
function have similar physiology in terms of pigment composition (for
plants and phytoplankton) and canopy structure (for plants). Therefore,
the species will have spectral similarities that allow discrimination of
functional types (Nair et al., 2008; Ustin & Gamon, 2010). Conversely,
by understanding this process, it is possible to estimate biodiversity
based on spectral diversity in plant canopies (Carlson, Asner, Hughes,
Ostertag, & Martin, 2007; Rocchini et al., 2010) and in phytoplankton
(Stomp et al.,, 2004; Striebel, Behl, Diehl, & Stibor, 2009), even if
taxonomic identification is not achievable. However, high fidelity, high
spectral and high spatial resolution data are required to resolve spectral
diversity in order to make best estimates of biodiversity (Rocchini et al.,
2010). While HyspIRI will provide the spectral resolution, at 60 m it may
not provide the spatial resolution to distinguish spectral diversity in
patchy, heterogeneous wetland canopies or swirls of phytoplankton
colonies.

High spectral resolution data is also optimal for estimating water
column and benthic biophysical properties. Narrow band, high spectral
resolution data enable physics-based radiative transfer modeling ap-
proaches to quantitatively retrieve multiple water column constituents
of interest (e.g., phycocyanin, chlorophyll-a, suspended mater, CDOM,
phytoplankton functional types, water depth and benthic composition;
Devred et al,, 2013). In inland waters the concentrations of the optically
active components of the water column (suspended matter, CDOM, and
phytoplankton pigments) vary by orders of magnitude, and may co-
vary or vary independently depending on the source and composition
of the suspended and dissolved materials (Dekker, Malthus, &
Goddijn, 1992; Dekker, Malthus, Wijen, & Seyhan, 1992). Further, the
absorption features of in-water optically active constituents vary in
depth, width, and location and may overlap in the reflectance signal
(Ampe et al., 2014), creating confounding effects when trying to isolate
any one biophysical parameter. For example, high CDOM concentra-
tions may cause traditional empirical CHL algorithms to retrieve spuri-
ous CHL concentrations (Siegel, Maritorena, Nelson, Behrenfeld, &
McClain, 2005), and multispectral (Landsat) detections of cyanobacteria
blooms in Lake Erie by Vincent et al. (2004) were likely a result of phy-
cocyanin correlating with a lurking variable such as turbidity, since
Landsat lacks the necessary spectral bands to measure the diagnostic
pigment phycocyanin (Kutser, 2009; Matthews, 2011). We elaborate
on spectral resolution in the section that follows.
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Fig. 2. Representative reflectance spectra of emergent, floating and submerged aquatic
vegetation measured above water. The inset graph shows the above water surface reflec-
tance of submerged vegetation under 1 m of water (CHL= 0.8 mgm >, TSM=0.7gm >,
and CDOM 440y = 02 m™').

2.3. Spectral resolution

High spectral resolution data provides more spectral bands needed
to unmix a greater number of endmembers (Schaepman et al., 2009),
a common problem in freshwater ecosystems which tend to be spatially
complex and spectrally heterogeneous at the 60 m pixel scale. For
vegetation canopies, the high spatial and phenological variability of
wetland/aquatic macrophytes necessitates high spectral resolution
data to adequately discriminate communities (Klemas, 2013a), measure
biochemical features (Ustin et al., 2004), and allows the potential for
more sophisticated spectral unmixing models (e.g., Dennison &
Roberts, 2003). For the water column, high spectral resolution data
are needed to retrieve multiple optical water quality variables and to
distinguish water column properties from the signal from the bottom
in optically shallow areas.

Fig. 2 shows the reflectance spectra of four different aquatic macro-
phyte communities: emergent perennial common reed, Phragmites
australis; floating leaved lotus (Nelumbo nucifera) and water chestnut
(Trapa natans); submerged rooted sago pondweed (Potamogeton
pectinatus) and free floating submerged coontail (Ceratophyllum
demersum); and submerged algae chara (Chara spp.). The reflectance
spectra of those communities were all measured above water. The
inset graph in Fig. 2 shows the surface reflectance of the submerged spe-
cies (coontail and sago in purple, and algae in pink) when submersed
under 1 m of water with CHL concentration 0.8 mg m~3, TSM concen-
tration 0.7 g m™ 3, and CDOM440) absorption 0.2 m™~ . As the water
column depth over submerged vegetation increases, the influence of
the absorbing and scattering properties of the water column increases,
changing the submerged vegetation signal (Fig. 2 inset; Hestir et al.,
2008).

All regions of the spectrum (visible, near infrared, and shortwave in-
frared) have been shown to be important in discriminating different life
forms of aquatic macrophytes (e.g., submerged, floating, and emergent)
(e.g., Becker, Lusch, & Qi, 2007; Hestir, Greenberg, & Ustin, 2012;
Khanna, Santos, Ustin, & Haverkamp, 2011). For species-level detection,
the visible region is the most useful for submerged vegetation species
(Santos, Hestir, Khanna, & Ustin, 2012), and the near and shortwave
infrared regions are particularly useful for discriminating submerged
vegetation from emergent and floating vegetation and species-level de-
tection of floating and emergent macrophytes (Hestir et al., 2008; Hestir
et al., 2012; Khanna et al., 2011; Rosso, Ustin, & Hastings, 2005).

Ustin et al. (2004) recommend high spectral resolution across the
full 400-2500 nm spectrum for full quantitative estimates of vegetation
biochemical composition. For vegetation, the strong absorption of light
between 400 and 700 nm is primarily a function of photosynthetic pig-
ments, and the high reflectance in the near-infrared (700-1100 nm) is
dominated by multiple scattering of photons in the leaves and canopy,
absorption by water, and minimal biochemical absorption. Reflectance
in the shortwave infrared is dominated by water absorption, and ab-
sorption by leaf carbon compounds such as cellulose and lignin and
other biochemicals such as nitrogen (Ustin et al., 2004).

High spectral resolution data also enable calculation of narrow band
indices commonly used to identify spectral features that are then used
for aquatic macrophyte detection, or correlated to vegetation biochem-
ical and biophysical characteristics (Byrd, O'Connell, Di Tommaso, &
Kelly, 2014). However, spatial heterogeneity of wetland and aquatic
vegetation commonly results in mixed pixels, and inundation of wet-
land vegetation significantly changes the spectral signal, reducing the
utility of narrow band indexes such as those centering on the red edge
for measuring plant condition (Turpie, 2013). For submerged vegeta-
tion, water column optical properties and absorption of near infrared
and shortwave infrared radiation also complicate the use of narrow
band indexes, particularly those in the infrared regions.

The water column is an effective absorber of near and shortwave in-
frared energy, whereas terrestrial and vegetated surfaces have relatively
high reflectance in these regions. These differences have long been
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exploited for detecting surface water extent and inundation using mul-
tispectral data (e.g., McFeeters, 1996). However, high spectral resolu-
tion is needed to estimate biogeochemical parameters in the water
column or the benthos in inland waters (Mouw et al., 2015). In the op-
tically complex waters typically found in freshwater systems there are
interacting effects of the absorption and scattering processes on the
reflectance spectrum due to the dissolved and suspended organic and
inorganic material in the water column and the reflectance of the bot-
tom (in clear or shallow-water systems where photons are not
completely attenuated by the water column). High spectral resolution
data provides the spectral bands and information redundancy need-
ed for accurate biogeochemical parameter retrievals (Devred et al.,
2013) from water bodies that have complex interacting processes
influencing the measured spectra. Recommendations have been
made recommending optimal band positions to measure water col-
umn and benthic properties, however, these vary by environment
and by dataset (Lee, Carder, Arnone, & He, 2007; Lee, Shang, Hu, &
Zibordi, 2014 and references therein), and none adequately account
for inland water quality conditions. High spectral resolution data
eliminate the need to select the optimal number of bands and posi-
tions, and thus enable retrievals across a wider range of conditions
and environments.

The visible and near infrared regions (400-800 nm) are the most rel-
evant regions for measuring the absorption and scattering properties
and the suspended and dissolved materials in the water column. How-
ever, the longer near and shortwave infrared regions are still important
for accurate water column measurements because they are needed for
atmospheric correction, which is critical to estimating water quality
and plant canopy biochemistry and vegetation species discrimination
(Devred et al., 2013; Ustin et al., 2004). For example, water vapor ab-
sorbs at 940 nm and 1130 nm, whereas liquid water absorbs at 980
and 1200 nm, which allows for differentiation of different phases of
water. High spectral resolution data in the near and shortwave infrared
regions may enable accurate estimations of atmospheric water vapor
over water bodies (Gao & Goetz, 1990; Gao, Heidebrecht, & Goetz,
1993), however there are still errors associated with simultaneous lig-
uid and water vapor retrievals (Thompson et al., 2015).

When the concentration of chlorophyll-a in the ocean water column
increases, the peak in reflectance shifts from blue to green. Thus, blue-
green band indexes have successfully been used for decades in ocean
color remote sensing to estimate the concentration of CHL (O'Reilly
et al., 1998). However, the adaptation of these indexes to turbid fresh-
water systems is complicated by the influence of dissolved organic mat-
ter and suspended particles on the reflectance spectrum. Dissolved
organic matter strongly absorbs light in the blue region of the reflec-
tance signal, and suspended matter absorbs and backscatters light,
shifting the peak of the reflectance to longer wavelength when there
is more scattering and absorbing material in the water column
(Dekker & Peters, 1993; Gitelson, 1992; Le et al., 2013). In shallow or rel-
atively clear water where photons are not completely attenuated by the
water column, the reflectance properties of the bottom further influ-
ence the signal.

Fig. 3 shows five reflectance spectra from four different lakes repre-
sentative of different water quality conditions, ranging from low to very
high CHL concentrations. Reflectance was measured above the water
surface with an ASD FieldSpec spectrometer. Table 2 summarizes the
characteristics of the lakes and the CHL concentration measured concur-
rent with the reflectance spectra. Chlorophyll-a has a distinct absorp-
tion feature near 660-690 nm, evident in reflectance spectra from the
meso- and eutrophic lakes, Lake Idro, Lake Mantua and Lake Trasimeno
(Fig. 3). The influence of phycocyanin on absorption at 620 nm can also
be seen in these lakes' spectra. High total suspended matter concentra-
tion in Lake Trasimeno increases the scattering and thus increases the
overall reflectance, as well as creating a reflectance peak in the near-
infrared. The spectra in Fig. 4 provide an example of some typical
water quality conditions, however, the ranges of freshwater systems

vary much more than these examples. For a more complete example
of cases, see Dekker et al. (2001).

24. Spatial resolution

Spatial resolution is one of the primary limiting factors in the appli-
cation of satellite remote sensing to freshwater ecosystems (Ozesmi &
Bauer, 2002). When considering spatial resolution requirements for in-
land water systems, the determining factor is the pixel size of the sensor
system relative to the size of ecosystem of interest. This will vary de-
pending on the type of system, the particular geometry of the feature,
and the geography of the target region. We compared the number of re-
solvable inland and freshwater ecosystems from space using the
CORINE Land Cover 2006 v. 16 seamless vector data for Europe
(scale ~ 1:100,000; Buttner, Kosztra, Maucha, & Pataki, 2012) and the
GEODATA TOPO 250K Series 3 seamless vector data for Australia
(scale = 1:250,000; Australia, Geoscience, 2006) as base datasets. We
considered a sensor able to effectively measure a water body when
the body was four times the size of a pixel to ensure the pixel is
“pure” and will not contain any significant signal from spectral mixing
with surrounding land or terrestrial vegetation. Thus, in order to resolve
a lake at 60 m pixel resolution, 16 (4 x 4) pixels or a 240 m x 240 m area
is required to consider the polygon detectable. This is potentially a con-
servative estimate, but ensures only pure pixels are considered as
“observable.”

Fig. 4 shows the percent of total freshwater ecosystem polygons de-
tectable from satellite datasets with Landsat-like spatial resolution
(30 m), HyspIRI-like spatial resolution (60 m), MERIS-like spatial reso-
lution (250 m) and MODIS-like spatial resolution (1000 m). Based on
this analysis, it appears European freshwater ecosystems are more suit-
able for coarse spatial scale satellite remote sensing measurement. In
Europe, nearly all freshwater ecosystems (including ponds, lakes and
reservoirs) are observable at both the Landsat and HyspIRI pixel resolu-
tions. The number of resolvable systems does not notably decrease until
pixel sizes reach MERIS-like 300 m resolution. However, in Australia
there is a notable decrease in the number of polygons detectable
when pixel size increases from 30 m to 60 m, and virtually no natural
freshwater ecosystems are detectable at MODIS-like resolution.

Given the geomorphology of the two continents, it is unsurprising
that there are differences in the observability of freshwater ecosystems.
Europe was recently glaciated and has many areas of sharp relief,
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Fig. 3. Representative reflectance of five water quality conditions measured in situ with an
ASD FieldSpec spectroradiometer in Italian lakes.
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Table 2
Chlorophyll-a concentration in lakes representing oligotrophic to eutrophic conditions.

Lake CHL Description Other information

(mgm~?)
Maggiore 1.16 Large deep, peri-alpine oligotrophic Clear blue lake

Secchi depth = 15 m

Idro 16.5 Large deep, peri-alpine meso-eutrophic Cyanobacteria bloom CPE = 3.3 x 10~ cells/L
Trasimeno 138 Large, shallow, endorheic meso-eutrophic Highly turbid, TSM = 30 g m >
Mantua (purple) 57.5 Small shallow, fluvial, artificial eutrophic Cyanobacteria bloom CPC = 31.25 mg m >
Mantua (orange) 93.8 Small shallow, fluvial, artificial eutrophic High concentrations of CHL corresponding to a phytoplankton bloom

resulting in runoff and drainage patterns that lead to more spatially sim-
ple and pseudo-symmetrical polygons. Australia, on the other hand, was
largely unglaciated, has much lower relief and exceptionally long
hydrologic residence times, resulting in sinuous, spatially complex sys-
tems not amenable to observations using large pixels. These estimates
of detectable freshwater ecosystems are predicated on the assumption
that the base vector datasets are accurate and comparable, which is
not entirely met. For example, the base vector layers are of different
mapping scales, though on the same order of magnitude. While we con-
sider our estimates to be conservative based on the 4 x 4 pixel require-
ment, they could also potentially be overestimates if the vector layers do
not represent small or isolated water bodies and wetlands. However, we
can conclude that the suitability of HyspIRI's proposed spatial resolution
of 60 m for global freshwater ecosystem measurements will vary geo-
graphically based on both the geomorphology of each continent,
which will control the size and shape of the freshwater systems.

2.5. Temporal resolution

Different freshwater ecosystem processes occur on different tempo-
ral scales. Freshwater systems are highly dynamic, and ecosystem func-
tion and response is largely driven by hydrology. Inundation period,
extent and frequency are some of the primary drivers of aquatic ecosys-
tem variability in primary production, nutrient cycling and other bio-
geochemical processes both in the water column and for wetlands
(Carpenter et al., 2011; Mackay et al., 2012; Stendera et al., 2012). Cap-
turing these dynamic events may be challenging for an optical satellite
mission because cloud cover, sun glint, smoke, and occasionally forest
cover bias observations, resulting in irregular time series that may ob-
scure important events.
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Fig. 4. European (top) and Australian (bottom) freshwater systems observable from satel-
lite remote sensing of varying spatial resolutions. The number of freshwater systems on a
continent that can be resolved by satellite remote sensing is dependent on the spatial res-
olution of the sensor, and the size and geometry of the water body.

When considering the temporal resolution of an optical satellite mis-
sion, we define two types of temporal resolution, the designed resolu-
tion (~19 days at the equator for HysplIRI, shorter at higher latitudes),
and the effective resolution, which is determined by the cloudiness
and amount of sun glint on the water surface relative to the revisit fre-
quency. Mercury et al. (2012) estimated that HyspIRI's 19 day equatori-
al revisit cycle (shorter at higher latitudes) will result in 83% cloud free
coverage quarterly, and >99% cloud free coverage on an annual basis.
Diurnal and daily variations in processes like ecosystem respiration or
the development and movement of a harmful algal bloom may not be
detectable at this effective resolution. However, HyspIRI's effective res-
olution is likely suited to measuring seasonal dynamics such as wetland
phenologic change (Davranche, Lefebvre, & Poulin, 2010), aquatic inva-
sive species response to management (Santos et al.,, 2009), or the sea-
sonal phytoplankton community composition of a lake and its detailed
bio-optical properties (Devred et al., 2013) because these can be charac-
terized on a quarterly and annual basis.

There are also interactions and tradeoffs between the factors deter-
mining the effective temporal resolution. These factors vary geographi-
cally and may influence the observability of freshwater ecosystems.
While the designed temporal resolution of HyspIRI will provide several
day revisit time at high latitudes, the persistent cloud cover common in
high latitudes could reduce the effective resolution (Mercury et al.,
2012). For instance, even though Fig. 2 suggests that European freshwa-
ter ecosystems are more observable than Australian ones based on the
spatial resolution of HyspIRI, the higher cloud cover in Europe reduces
the effective temporal resolution, and may reduce the overall observ-
ability of freshwater ecosystems in Europe. An equatorial mid-
morning ascending orbit will increase the likelihood of sun glint at
low latitudes, thus decreasing the effective resolution, although the
high spectral resolution of HyspIRI could provide the data needed to
correct some sun glint if it occurs below sensor saturation levels
(Devred et al., 2013; Kutser, Vahtmde, & Praks, 2009).

Finally, there is strong seasonality in the observability of freshwater
ecosystems (Mercury et al., 2012). Thus, in monsoon regions, the
precipitation patterns will bias regular observations to dry season con-
ditions. Understanding freshwater ecosystem responses to monsoons
and disturbance events such as cyclones may be limited by HyspIRI's
effective resolution, and may take more time to assess.

2.6. Radiometric capability and its impacts on spatial resolution

The following three instrument characteristics interact affecting the
radiometry capability of an aquatic sensor: 1) radiometric resolution,
and 2) signal-to-noise ratio (SNR) and 3) radiometric dynamic range.
The radiometric resolution of a sensor determines the lowest level of
radiance or reflectance that a sensor can reliably detect per spectral
band and it depends on the sensor digitization (e.g. 8 vs. 14 bits,
Vanhellemont & Ruddick, 2014). The SNR indicates how many times
the signal would be larger than the total noise level. For freshwater eco-
systems, the sensitivity of the sensor, expressed as SNR, is critical to
making accurate biophysical measurements of both the water column
and of wetland vegetation where inundation affects the vegetation sig-
nal. This is because a sensitive sensor is needed to measure small chang-
es in the low signal of water leaving radiance that is strongly affected by
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atmospheric variability, air-water interface reflections and refraction
from diffuse and direct sky and sunlight (Brando & Dekker, 2003;
Hochberg et al., 2011; Hu et al., 2012; Wettle, Brando, & Dekker,
2004). Another equally important feature of sensor performance for
successful measurement of freshwater systems is sufficient dynamic
range to be able to make sensitive measurements over low radiance
pixels (water) while not saturating over neighboring bright pixels
(land or sunglint).

The combined effects of SNR and dynamic range impact the accuracy
of biophysical retrieval (e.g., Hu et al., 2012; Vanhellemont & Ruddick,
2014). For example, when Giardino, Brando, Dekker, Strombeck and
Candiani (2007) used Hyperion to measure CHL and TR in Lake Garda
in Northern Italy, they had to convolve a 5 x 5 low pass filter over the
image to reduce the effects of the sensor's poor SNR and environmental
noise (Brando & Dekker, 2003; Wettle et al., 2004), effectively reducing
the spatial resolution from 30 m to 150 m. Similarly, Vanhellemont and
Ruddick (2014) found it necessary to bin Landsat 7 ETM + data to
9 x 9 pixels (270 m) to reach the noise equivalent of Landsat 8 OLI,
and had to further bin the data to 11 x 11 (330 m) due to the limited
digitization (8 bits) of Landsat 7 ETM +. Freshwater ecosystems are
spatially complex, and typically have both low (water) and high
(land) radiance targets in a single scene, making simultaneous mea-
surement of both problematic. The high SNR and large dynamic range
proposed for the HyspIRI mission makes it uniquely well designed for
measuring freshwater ecosystems accurately and moderate to high spa-
tial resolution.

2.7. Current observation capabilities

For every type of measurement, there are tradeoffs in sensor resolu-
tion. Fig. 5 shows some of the most common satellite sensors used for
freshwater ecosystem measurements and their relation in terms of
spectral (x-axis), temporal (y-axis), and spatial resolution (size of the
bubble). HyspIRI's proposed spectral, temporal and spatial characteris-
tics occupy an observation space shared with only a few other satellite
missions. However, HyspIRI's observational capabilities make it unique
and necessary for freshwater ecosystem measurements, as it occupies
a unique niche in sampling space. Freshwater ecosystem measurements
from satellite remote sensing can be classified based on the sampling
strategy and frequency. We categorize these different schemes into
1) continuous samplers, 2) targeted mappers, and 3) global mappers.
Continuous samplers are geostationary satellites that can image high
temporal frequency (e.g., Korea's Ocean Color Satellite GOCI that
makes a measurement once an hour) of a specific location to provide
near-continuous monitoring of dynamic processes such as harmful
algal blooms and river plumes. Continuous samplers provide coarse
spatial resolution over a specific, targeted region. Targeted mappers
can be considered pseudo global mappers. Also in a lower earth orbit
(although not necessarily sun synchronous, e.g., the Hyperspectral Im-
ager for the Coastal Ocean, HICO, onboard the International Space Sta-
tion), targeted mappers acquire data over particular areas based on
data acquisition requests (e.g., NASA's EO-1 Hyperion or commercial
missions suitable for freshwater like Worldview 2 and 3; WV2, WV3),
or regular acquisitions over a region of interest (e.g. the Italian Space
Agency's proposed PRISMA mission, or the German Environmental
Mapping and Analysis Program) that will provide mapping-like capabil-
ities over a specific region.

Fig. 5 shows the observation capabilities of common current and
near to launch sensors in terms of temporal, spectral, and spatial resolu-
tions. Several missions, such as the soon to be launched Sentinel-2 Mul-
tispectral Instrument (S2-MSI) provide different spectral bands at
different pixel resolutions. Thus, while S2-MSI will have 13 spectral
bands across the visible, near and shortwave infrared regions, it will
only have four broad “multispectral bands” in the visible and near infra-
red regions at 10 meter pixel resolution.
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Fig. 5. The spectral (x-axis), temporal (y-axis), and spatial (size of the bubble) character-
istics of satellite sensors commonly used for freshwater ecosystem measurements. Note:
sensors that provide different spatial resolutions are plotted separately, and sensors
with overlapping resolution characteristics are slightly jittered for graphing purposes.

Global mappers are valuable for providing regular, repeated mea-
surements of the globe over long periods of time. They typically are
also archival missions, meaning they provide a time series of regular ob-
servations. Archival global mappers are the most important category of
measurement for addressing multiple end user goals of resource moni-
toring and ecosystem science. Archival global mapping missions with
free and open data access policies have transformed scientific under-
standing of earth surface processes (National Research Council, 2007;
Waulder et al.,, 2012), and provide the most valuable datasets for moni-
toring (e.g., McCullough, Loftin, & Sader, 2012), and understanding
freshwater ecosystem processes and change (e.g., Olmanson, Brezonik,
& Bauer, 2014). While Fig. 5 depicts the observation capabilities of com-
mon current and near-ready to launch satellite missions, it includes
continuous and targeted mappers, such as Worldview 2 & 3 and Hype-
rion which may not be suited for ecosystem change measurements.
Fig. 6 explicitly summarizes the global mapping capability current and
near future global mapping capability for freshwater ecosystem science
and management. In comparison with current global mapping capabil-
ities, HyspIRI occupies a unique measurement space in both its spatial
resolution and temporal resolution, and provides significantly more
spectral information than any other global mapper (Fig. 6).

3. Case studies

The following case studies illustrate how the characteristics of a
hyperspectral global mapping satellite mission, such as the planned
HyspIRI mission, address the needs of freshwater aquatic system scien-
tists and managers. We use as our example for freshwater aquatic ecol-
ogy the remote sensing of primary producers. In the following case
studies we highlight published data and existing methods, demonstrat-
ing the maturity of the science. However, each case study demonstrates
existing gaps in the spatial, temporal, and spectral characteristics of the
application, highlighting the need of a mission that will fill these gaps.

3.1. Site description

The Mantua lake system is an important freshwater wetland system
in Northern Italy that provides critical habitat for aquatic vegetation and
water birds in the region. The Mantua system is formed by the damming
of the Mincio River, a tributary of the Po, and fed by Lake Garda, the larg-
est lake and longest river of Italy, respectively. The lake waters are
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Fig. 6. The spectral, spatial and temporal characteristics of current and near future global
mappers commonly used for freshwater ecosystem measurements.

productive, characterized by eutrophic to dystrophic levels: chlorophyll
concentrations average 32.8 & 41.8 mg m~3, and can reach up to
280 mg m™3 (see Bolpagni et al., 2014 and references therein). The phy-
toplankton communities in the Mantua lake system are typical of eutro-
phic and hypertrophic systems rich in organic matter: diatoms in the
spring and cyanophytes and chlorophytes in the summer (Pinardi,
Bartoli, Longhi, & Viaroli, 2011). From spring to autumn, a large part of
the surface of the lakes is covered by dense stands of floating emergent
macrophytes, including the exotic invasive lotus flower (N. nucifera), as
well as common water chestnut (T. natans), spatterdock (Nuphar lutea)
and water lily (Nimphaea alba).

Recent studies (e.g., Bolpagni et al., 2014; Bresciani, Giardino, et al.,
2009; Bresciani et al., 2013; Villa, Bresciani, Braga & Bolpagni, 2014;
Villa, Mousivand & Bresciani, 2014) have shown the capability of three
sensors mounted on ground, airborne and satellite platforms, in observ-
ing optical properties of different primary producers of these lakes. In
this section we summarize their findings and address how a
hyperspectral global mapping mission could provide deeper knowledge
on the aquatic ecology of the Mantua lake system.

3.2. Cyanobacteria blooms

Cyanobacterial blooms can lead to hypoxia and alter food-web
dynamics (Anderson, Glibert, & Burkholder, 2002), and may pose a sub-
stantial health risk for communities accessing affected water for drinking,
irrigation and recreation if the blooms contains toxins. If a cyanobacteria
bloom is toxic, it can affect liver cells and respiratory health (Codd,
Lindsay, Young, Morrison, & Metcalf, 2005), and long term exposure
may lead to neurodegenerative diseases and Alzheimer's-like dementia
(Dunlop, Cox, Banack, & Rodgers, 2013). Phycocyanin (PC), the diagnostic
pigment for cyanobacteria detection, is detectable using optical remote
sensing (Dekker, Malthus, & Goddijn, 1992; Dekker, Malthus, Wijen, &
Seyhan, 1992; Simis, Peters, & Gons, 2005) due to PC spectral absorption
near 620-630 nm. This narrow PC absorption feature can be discriminat-
ed from CHL, which has an absorption a feature independent of PC around
676 nm (Kutser, 2009).

We measured the cyanobacteria trend in the Mantua lakes using in
situ data gathered from an optical system designed for high temporal
frequency acquisition of high spectral resolution radiometric measure-
ments. The optical system is called the multiplexer radiometer
irradiometer (MRI), and is based on a commercial optical multiplexer
described in (Bresciani et al., 2013). The MRI was deployed on a pon-
toon in the upper basin of the Mantua lakes from 2 September to 2

October 2011. The PC index was calculated using the algorithm of
Kutser et al. (2006) (Eq. 1):

PC — P max(640-650) , (1)
P min(610-630)

where the PC index is the simple ratio of maximum reflectance be-
tween 640 and 650 nm and the minimum reflectance between 610
and 630 nm. The results are shown in Fig. 7.

Fig. 7 shows the daytime and day-to-day dynamics of cyanobacteria
(mainly composed of Planktolyngbya limnetica and Cylindrosperopsis
raciborskii) in Lake Mantua from a point based measurement. Similar
to Gons, Hakvoort, Peters, and Simis (2005), the index makes use of nar-
row bands at the key spectral features of phycocyanin. High spectral res-
olution is necessary for detecting PC spectral features, especially
because the location of the spectral features varies based on the relative
concentration of PC to CHL (Gitelson, Schalles, & Hladik, 2007). Of the
legacy and near-future spaceborne multispectral sensors, only MERIS
and OLCI have the spectral bands in the positions required to detect
PC (Kutser, 2009), and even this sensor lacks the high spectral resolu-
tion to detect PC when it is present in large quantities (Kutser et al.,
2006).

Fig. 7 also shows the daytime variation in PC and the value of PC
measured at 10:30 am, the approximate schedule for a mid morning
satellite overpass. From these results, it is clear that a mid morning over-
pass would adequately represent the daily median PC of Lake Mantua.
Some species of cyanobacteria can regulate their buoyancy, forming
non uniform distributions through the water column (Paerl, 2008;
Reynolds, Oliver, & Walsby, 1987). When coupled with advective cur-
rents, the spatial distribution of a cyanobacterial bloom can be patchy,
making it difficult to monitor from fixed depth or point based sampling
stations (Hunter, Tyler, Willby, & Gilvear, 2008; Kutser et al., 2006). It is
unclear whether the daily trend, notably the two peaks in PC in mid and
late September followed by the PC decrease in October is due to chang-
ing bloom conditions, or patchiness from vertical and horizontal move-
ment of the PC. The temporal frequency of a global mapping mission
with a revisit time similar to Landsat fails to provide adequate coverage
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Fig. 7. Phycocyanin (PC) index in Upper Mantua Lake, calculated from an above-water in
situ high temporal frequency, high spectral resolution radiometer using the algorithm of
Kutser et al. (2006). The measurements are plotted in gray dots, the measurement made
at 10:30 am is plotted in red, and the black line indicates the spline-smoothed daily medi-
an trend. The gray vertical bars indicate the overpass dates of Landsat 7.
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of the temporal dynamics evident in this example (Fig. 7). High tempo-
ral resolution imaging spectroradiometry from geostationary satellite
platforms could synoptically capture the temporal dynamics of
cyanobacterial blooms. However, spatial and spectral resolutions may
limit the practical application of such platforms for systems such as
the Mantua lakes.

3.3. Aquatic vegetation phenology

In addition to providing valuable habitat to multiple freshwater eco-
system species, emergent wetland vegetation have high rates of net pri-
mary production and evapotranspiration, drive a large portion of
wetland carbon formation and storage, and play an important role in
wetland sediment stability and accretion (Byrd et al., 2014; Zhou &
Zhou, 2009). Indeed, the emergent common reed Phragmites may be
the most widely globally distributed wetland species (Zhou & Zhou,
2009). Floating and submerged plants provide important structuring
for freshwater ecosystems, influencing the physical and chemical envi-
ronment and food web (Liu, Zhang, Yin, Wang, & Qin, 2013; Meerhoff,
Mazzeo, Moss, & Rodriguez-Gallego, 2003; Santos, Anderson, & Ustin,
2011; Vanderstukken, Declerck, Decaestecker, & Muylaert, 2014). Un-
derstanding the growth and distribution of aquatic vegetation is useful
in understanding subsequent ecosystem properties. Remote sensing is
powerful and effective to monitor vegetation status, growth and bio-
physical parameters, providing a synoptic assessment and permitting
retrospective change detection analyses in a cost effective way
(Coppin & Bauer, 1994; Munyati, 2000). Most of the methods adopted
to study vegetation from satellite observations have been based on veg-
etation indexes (VIs), that have demonstrated enormous usefulness as
indicators of green terrestrial vegetation growth and vigor (Wickland,
1989). For aquatic vegetation, VIs have been used for mapping and
monitoring common reed vegetation (Davranche et al., 2010; Khanna
et al., 2011; Poulin, Davranche, & Lefebvre, 2010; Villa, Laini, Bresciani,
& Bolpagni, 2013), assessing vegetation health (Bresciani, Bolpagni,
Braga, Oggioni, & Giardino, 2012; Bresciani, Stroppiana, Fila, Montagna
& Giardino, 2009), estimating leaf area index (Zhou & Zhou, 2009),
and for revealing the presence of phenomena such as the die-back syn-
drome of common reed aquatic vegetation (Davranche et al., 2010;
Evans, Lyons, Barber, Stone, & Hardy, 2011).

We used the recently developed Water Adjusted Vegetation Index
(WAVI; Eq. 2), which has been proven to be a diagnostic index for de-
tecting a variety of macrophyte types (Villa, Brescianiet al., 2014; Villa,
Mousivand et al., 2014), to capture the main types of aquatic vegetation
growing in the Mantua lakes. The WAVI is given by the following:

1+1) PNIR —PBLUE 7 2)
ONIR + PBLUE+L

where L is a background signal correction factor (Villa, Mousivand et al.,
2014) (set to 0.5 for this case study), pnir is the measured reflectance in
a selected near infrared band (850-880 nm for this case study), and
ppue is the measured reflectance in a selected blue band
(450-510 nm for this case study).

The index was applied to 14 Landsat-8 OLI (L8) scenes acquired from
April to November 2013, which have been corrected for atmospheric
effect with ATCOR (Richter & Schldpfer, 2011). The WAVI was then de-
rived from normalized difference response of blue (L8 band 2) and near-
infrared (L8 band 5) spectral ranges, adjusted for water background
effect. Based on a vegetation survey performed during 2013 over Man-
tua lakes system we defined vector polygons of homogeneous macro-
phytes stands covered by monospecific stands or a mixture of two
species: 1) monospecific emergent helophytes (P. australis), 2) mono-
specific emergent rhyzophytes (N. nucifera), 3) small and dense free-
floating plants (mixture of Salvinia natans, Spirodela polyrrhiza), and
4) composite association of floating leaved vegetation (mixture of
T. natans, N. alba), 5) dense submerged vegetation (C. demersum at

~5 cm depth), 6) Open water where no vegetation was identified. All
polygons representing each macrophyte stand over the study area
were used to extract the WAVI values for each date in L8 time series.

Fig. 8 shows the multi-temporal WAVI profiles presented as average
and standard deviation describing seasonal variation in phenology from
Spring to Autumn for different aquatic vegetation communities. Emer-
gent helophytes (P. australis) and rhyzophytes (N. nucifera) show a
rapid rise in the calculated WAVI, indicative of an increase in biomass
and green leaves. Small dense free floating (S. natans + S. polyrrhiza)
and floating leaved (T. natans + N. alba), communities expand their
cover over the water surface later in the season and show higher vari-
ability due to the assemblage heterogeneity. The seasonal variation in
the WAVI calculated for submerged vegetation (C. demersum) is likely
influenced by changing water level over the season. The WAVI profile
for water is stable across the year and lower than all the aquatic vegeta-
tion communities.

The broad bands and the 16-day repetition cycle of Landsat 8
allowed us to capture the whole aquatic vegetation heterogeneity pres-
ent in Mantua lake system area and to assess their specific phenological
cycle. This example shows that in a temperate freshwater ecosystem
that has clear cloud free conditions during the growing season, the ef-
fective resolution is suited to observing phenology. While in this exam-
ple the target macrophyte communities were identified based on field
data, hyperspectral imagery would allow the identification and map-
ping of each community based on their spectral properties. Hence the
HyspIRI proposed temporal and spectral resolutions would enable this
phenological analysis with a lesser need for dedicated field surveys.
These combined resolutions would also permit to identify other pro-
cesses of interest such as leaf biochemistry, functional type, and under-
standing invasion strategies and dynamics.

3.4. Chlorophyll-a concentration

Providing a proxy of phytoplankton biomass and being an indicator
for eutrophication and primary production, CHL concentration is an im-
portant parameter in water's ecology and management. Since the last
century satellite remote sensing has been successfully used to map the
spatial pattern of CHL in lakes (e.g., Lindell, Pierson, Premazzi, & Zilioli,
1999). To the aim, various methods were developed, both based on
bio-optical modeling (e.g., Pierson & Strombeck, 2001), and on semi-
analytical methods based on band ratios at wavelengths with unique
CHL absorption features (e.g., Gitelson et al., 2008, Fig. 4).

We estimated the CHL concentration in Mantua lakes using airborne
data gathered from APEX (Airborne Prism EXperiment). APEX is an im-
aging spectrometer that records the electromagnetic radiation in 98
bands between 426 and 910 nm (Itten et al., 2008). The image was ac-
quired on the Upper Lake on 21 September 2011, with a ground resolu-
tion of 4 m. The ratio between the average of the APEX atmospherically
corrected reflectance measured between bands 690-697 nm and the
average reflectance measured at 670-673 nm was converted into CHL
concentration according conversion factors specific for Mantua lakes
(Bresciani et al., 2013). As shown in Bolpagni et al. (2014), the mean
CHL concentration obtained from APEX (16.2 + 12.5 mg m~3) was
similar to the mean CHL concentrations measured in situ (15.9 +
10.6 mg m™3).

Fig. 9 shows the map of CHL concentration derived from the APEX
image. To exemplify the effect of spatial resolution on observability of
water column drivers of primary productivity in Lake Mantua, we con-
volved the APEX-derived map to the spatial resolution of Landsat,
HysplIRI, MERIS and MODIS using nearest-neighbor re-sampling. The
maps show how the spatial resize affects the ability to measure the
patchy spatial distribution of CHL captured in the 4 m pixel of APEX;
the 30 m and the 60 m resolution of Landsat and HysplIRI still allow
the spatial trends of CHL concentration to be captured, although finer
scale patterns vanish. MODIS does not have the appropriate spatial res-
olution to assess CHL in the Mantua lakes.
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Fig. 8. Seasonal variation in WAVI (averages and standard deviations) from Landsat 8 OLI
for 5 different aquatic vegetation communities and open water.

Based on our estimates of freshwater ecosystem observability in
Section 2.4 (Fig. 4), Lake Mantua is not observable by either MODIS or
MERIS, because there is not a 4 x 4 block of pixels contained within
the boundary of the water body (Fig. 9). This case study of Lake Mantua
illustrates how the often sinuous, riverine shape and spatial complexity

of freshwater systems influence their observability. While there are
MERIS pixels present within the water body in Fig. 9, a close comparison
of the edges of the water body as resolved by APEX show that the MERIS
pixels are mixed with adjacent land and wetland complex pixels. The
large levee bisecting the upper northeast portion of lake and the wet-
land stream complex in the southwest portion of the lake are not re-
solved at all by MERIS. At the MODIS pixel resolution, there are no
pixels that do not contain significant portions of land.

Recently it was suggested that while large spatial resolution sensors
such as MODIS and MERIS could not effectively view the majority of
freshwater systems, they could be used to measure a selection of
water bodies representative of a target ecosystem, serving as “virtual
stations” for ecosystem measurement (Dekker & Hestir, 2012). These
results challenge that suggestion because a lake that is only resolved
by a few large pixels results in a “smoothing” of the CHL measurements;
local areas of high concentration are mixed with areas of lower concen-
tration to produce results that maybe indicative of the “average” surface
concentration, but may not be informative to interpreting spatial pat-
terns in the data. For example, the large pixels representing “average”
surface concentration conditions could impede algal bloom detection,
and may obfuscate sources of eutrophication and processes of primary
production. In such an instance, using MERIS measurements as virtual
stations for ecological understanding of Lake Mantua may be too
limited.
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Fig. 9. CHL concentration in Upper Mantua Lake from the APEX airborne imaging spectrometer (top), and re-sampled to different sensor spatial resolutions. Color scale ranges from purple

to red for CHL ranging from 0 to 60 mg m—>.
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4. Discussion
4.1. High spectral resolution data provide advantages

Using existing, published techniques, these case studies demon-
strate that a hyperspectral global mapping mission such as HysplIRI
meets the measurement requirements of multiple end users for fresh-
water ecosystem science and management. These case studies, in addi-
tion to the robust and increasing literature (Fig. 1) also demonstrate
that algorithms for retrieving some freshwater ecosystem biophysical
variables are mature. Archival, global mapping missions with multi-
spectral (e.g., Landsat) or narrow band moderate spectral resolution
sensors (e.g., MERIS) have provided high quality data from which
many ecosystem process studies of the terrestrial and coastal zone
have been achieved. However, these sensors have measurement resolu-
tion tradeoffs that make them unsuited for freshwater ecosystem stud-
ies. For example, while Landsat has the spatial resolution for freshwater
systems, it cannot provide the spectral resolution to resolve individual
phytoplankton pigments. Similarly, MERIS spectral bands are well suit-
ed for water column characterization and high frequency measure-
ments, but the pixel size limits the number of freshwater systems
resolvable from that sensor.

Using spectral indices in a semi-empirical approach provides easily
calculable estimates of water column and plant canopy properties (e.g.
Kutser et al., 2006; Davranche et al., 2010; Bresciani et al., 2013; Villa,
Bresciani et al., 2014). Narrow band indices enabled by hyperspectral
data that highlight specific absorption features can also be used to select
and empirically calibrate or modify broad band indices, providing a link
between hyperspectral and multispectral datasets (Das & Seshasai,
2014). However, such approaches require different relationships for
each property of interest, and the underlying empirical relationships
may not be extensible to new locations or times. On the other hand, ra-
diative transfer inversion of remote sensing spectra can simultaneously
estimate water column properties such as CHL, PC, CDOM, non-algal
particulate matter and water depth, and plant canopy properties such
as leaf pigment, canopy water content, canopy dry matter and leaf
area index. Hyperspectral data leads to more successful inversion of a
larger number of properties and creates the potential for measuring
new properties (e.g., phytoplankton functional types, particulate car-
bon) because the additional information helps to overcome the
underdetermined problem (Devred et al., 2013).

Unlike multispectral terrestrial and ocean color missions that have
band positions selected for targeted applications that necessarily limit
the biophysical variables retrieved from a given sensor, a hyperspectral
mission (with necessarily high fidelity) provides the spectral informa-
tion needed to retrieve multiple biophysical variables simultaneously
from both the water column and wetland/riparian components of fresh-
water ecosystems. The result of this capability is that by using just one
measurement, it is possible to gain improved understanding of ecosys-
tem properties and processes. In our case studies, we presented the es-
timation of only a single biophysical variable at a time. While current
algorithms tend to be targeted to retrieve just one or a few biophysical
variables at a time (e.g. Kutser et al., 2006; Bresciani et al., 2013; Villa,
Bresciani et al., 2014), algorithm developments supported by compre-
hensive high quality hyperspectral datasets may lead to algorithms
that perform multiple variable retrievals from a single processing
chain. A hyperspectral global mapping mission will provide the data
needed to investigate robust algorithm development, including a global
atmospheric correction solution and new biophysical variable retrievals,
such as phytoplankton functional types (Devred et al.,, 2013).

4.2. Global mapping, archival missions and access are keys to end user
uptake

Of the three sampling schemes provided by satellite remote sensing
missions, global mapping missions may be arguably the most important

for whole of ecosystem studies because they make systematic, repeated
measurements, providing both a global picture with synoptic regional
sampling and local detail. This is particularly important for freshwater
ecosystems, where some of the largest drivers of biodiversity require re-
peated synoptic observations. These drivers include land use and land
cover change and eutrophication, watershed deforestation, habitat con-
nectivity (both longitudinal and latitudinal flow connectivity), and
hydro-period (Stendera et al., 2012).

Archival global mapping missions are critical to end user uptake be-
cause they provide measurements all over the world. Open access and
free data policies enable wider use and broader management and scien-
tific uptake. Operational algorithms implemented in open source soft-
ware platforms (e.g., SeaDAS and BEAM) provide tools that lower the
“hyperspectral” entrance barrier and allows more diverse earth science
applications. This is especially critical for freshwater ecosystem science
and management in developing nations and regions with poor infra-
structure and limited access to traditional sampling technologies. One
of the greatest end-user needs for freshwater ecosystem management
is reliable, repeatable inexpensive monitoring (Bresciani et al., 2011),
which is in part provided by archival global mapping missions with
open access and free data policies. Such missions also serve to meet
one of the greatest scientific end-user objectives: ecosystem change de-
tection. Retrospective time series analysis of ecosystem response to land
management and climate change and variability is only possible with
archival missions.

4.3. Observation systems for whole of system characterization

While there are strong arguments to be made for archival global
mapping missions, not all freshwater ecosystem characteristics will be
observable from such sampling schemes. Clearly, our PC case study
demonstrates that a global mapping mission, even with a daily revisit
cycle, will not adequately resolve all important ecosystem processes
(Fig. 9). While a hyperspectral archival global mapping mission, like
HyspIRI, meets a critical gap in our global mapping capabilities
(Fig. 8), it also has limitations. The temporal resolution of HyspIRI limits
the utility of such a mission to characterize processes such as the devel-
opment of a harmful algal bloom, and the proposed late-morning as-
cending equatorial crossing of the satellite may result in substantial
amounts of sun glint at low latitudes (Devred et al., 2013), which
could result in a loss of valid observations, but could also be used to bet-
ter characterize wetland inundation (Vanderbilt, Khanna, & Ustin,
2007). Similarly, the spatial resolution of HyspIRI may not be appropri-
ate for all global freshwater ecosystems: while HyspIRI's spatial resolu-
tion is more than suitable for more than 90% of Europe's freshwater
ecosystems, only 52% of Australia's swamps, and less than 20% of
Australia's water courses and water bodies may be detectable at
60 m pixel resolution.

These shortcomings are not surprising: one mission will not solve all
observation needs. Optimal freshwater ecosystem sampling schemes
should include complementary in situ and satellite observations, includ-
ing combined optical and radar approaches (Prigent, Matthews, Aires, &
Rossow, 2001). Data fusion techniques are mature, allowing researchers
to combine spatial and spectral information from one or multiple re-
mote sensing observations or a time series of observations (Bioucas-
Dias et al., 2013). Hyperspectral data facilitate bridging the scaling gap
from molecular-to ecosystem-to-biome by providing the spectroscopic
information needed to resolve and couple radiative transfer models
and scale process based models (Schaepman et al., 2009).

5. Summary & conclusions

1. Freshwater ecosystems are important societal and ecological re-
sources under threat due to anthropogenic and climate change. Ob-
serving freshwater ecosystems from space is challenging because
many are relatively small, spatially complex, temporally dynamic,
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and optically complex both in the plant canopy and water column.
Current sensors cannot meet all of these challenges.

2. The HyspIRI mission occupies a unique niche in observational capa-
bility in terms of its spectral, spatial, temporal, and radiometric reso-
lution. The resolution characteristics of the HyspIRI mission make
well suited to observing freshwater ecosystems.

3. HyspIRI's high spectral and radiometric resolution enables accurate,
simultaneous measurement of riparian, wetland and aquatic plant
canopy properties and water column biophysical properties, provid-
ing synoptic, whole-ecosystem measurements for understanding
ecosystem function and change.

4. We estimate that HyspIRI's spatial and effective temporal resolution
will detect a large portion of freshwater ecosystem properties at a
seasonal time scale. This will provide measurements of plant phenol-
ogy, but may not capture highly dynamic processes such as potential-
ly harmful algal blooms. Further, the observability of freshwater
ecosystems will vary geographically, based on cloud cover and the
geomorphology of the landscape, which influences the size, shape,
and distribution of freshwater ecosystems.

5. The archival, global mapping mission planned by HyspIRI is needed
to provide reliable, repeatable monitoring for ecosystem studies
and to meet the data requirements of end-users. Open access and
free data policies, operational algorithms and open source platforms
are needed to lower the hyperspectral entrance barrier for end-users.
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