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Jagger’s Law

You can’t always get what you want 
But if you try sometimes, well you just might find 
You get what you need

 — Jagger and Richards, 1969

ABSTRACT

Management of the Sacramento River and 
Sacramento–San Joaquin Delta (SRD) is one of 
California’s greatest challenges, requiring trade-offs 
between valued components that serve a multiplicity 
of conflicting purposes. Trade-offs do not signal a 
failure to create clever enough models, or scenarios 
that find a single optimal solution. Rather, an 
optimal solution that meets multiple objectives does 
not exist. We demonstrate an improved method 
for multiple-objective allocation of water: “turn-
taking” optimization (TTO) within a multi-model 
cloud computing framework. We apply TTO to an 
array of physical hydrologic models that are linked 

with the Ecological Flows Tool (EFT): a multi-species 
decision support framework to evaluate how specific 
components of the flow regime promote and balance 
favorable habitat conditions for 15 representative 
species and 31 indicators within the SRD. Applying 
the TTO approach incorporates the existing 
modelled representation of socio-economic water 
management criteria, priorities, and constraints — and 
optimizes water-release patterns each water year 
using a dynamically shifting set of EFT indicators. 
Rather than attempting to optimize conditions for 
all ecological indicators every year, TTO creates 
flexibility and opportunities for different indicators 
to be successful in different years, informed by the 
frequency with which each species’ ecological needs 
should be met. As an individual EFT indicator is 
successful in a particular year, its priority in one 
or more subsequent years is reduced (and vice 
versa). Comparing TTO to a Reference Case scenario 
based on current management practices, 12 EFT 
indicators are improved, 14 show no change, and 
5 show a reduction in suitability. When grouped into 
nine species and life-history groups, performance 
improved in four (late-fall-run Chinook, winter-
run Chinook, spring-run Chinook, and Fremont 
cottonwood), did not change in four (fall-run 
Chinook Salmon, Delta Smelt, Splittail, and Longfin 
Smelt), and was worse in one group (Steelhead).
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INTRODUCTION

Developing greater awareness of the value of 
flexibility to manage ecosystem trade-offs among 
multiple objectives — and providing approaches that 
enable this flexibility in a real-world setting — is 
urgently needed. Flexibility begins with emphasizing 
holistic, integrated ecosystem-based management, 
monitoring the state of continuously fluctuating 
systems over relevant scales, and adjusting short-
term priorities accordingly. This, in turn, requires 
managers to adopt a mindset focused on adaptability 
and learning (Christensen et al. 1996; Schindler and 
Hilborn 2015). Water-allocation dilemmas can be 
found both globally (Perrone and Hornberger 2014; 
Zeng et al. 2017) and locally in the Sacramento 
River and Sacramento–San Joaquin Delta (hereafter, 
the SRD). Well before the 2012–2016 drought, the 
SRD had been widely characterized as being in crisis 
because of an inability to reconcile and balance 
competing objectives and resource demands (Hanak 
et al. 2013; Lund 2016). In a recent analysis of Bay 
Delta Conservation Plan (BDCP, renamed California 
WaterFix) development scenarios, Alexander et al. 
(2014) clearly illustrate the impossibility of achieving 
multiple ecosystem flow objectives each and 
every year. With winners and losers depending on 
hydrologic conditions and priorities each year, water 
managers constantly face meeting irreconcilable 
demands, and generally lack the tools to weigh 
these trade-offs. Current management relies largely 
on deterministic models in which priorities and 
objectives are decided in advance — an approach 
which, at best, yields a narrow set of solutions with 
limited emphasis on — or insight into — what the 
potential trade-offs might be (Martin et al. 2016; Poff 
et al. 2016). Failure to reconcile these trade-offs is 
not the result of a failure to create a clever enough 
model that will find the optimal solution. Rather, 
a single optimal “all-years and all-values” solution 
does not exist (Alexander et al. 2014).

Ecological flow management is widely recognized 
as an important tool that can promote the resilience 
and recovery of native species. Many river-dependent 
plants and animals are strongly influenced by — and 
have adapted to — natural variation in flow, and many 
fish and riparian species possess traits that allow 
them to tolerate or exploit certain flow conditions. 
Although not the only stressor, the alteration of river 
flow regimes and habitat losses associated with dam, 
diversion, and other water-supply operations is one 
of the leading causes of declines in imperiled aquatic 
ecosystems (Arthington et al. 1992, 2006; Richter et 
al. 1996, 1997; Stanford et al. 1996; Poff et al. 1997, 
2010; Annear et al. 2004; Postel and Richter 2003; 
Tharme 2003; Petts 2009; Carlisle et al. 2010; Fleenor 
et al. 2010; Poff and Zimmerman 2010; NRC 2012; 
Hanak et al. 2013; Null et al. 2014).

At odds with more naturally variable river flows, 
the management of many engineered systems 
like the SRD is based on complex layers of inter-
agency rules and regulations intended to ameliorate 
competing demands for water — biological opinions 
(NMFS 2009) being one example. Within ecosystem 
objectives themselves, endangered species' legal 
requirements focus attention toward individual 
species management, a focus that tends to partition 
the world into “winners and losers,” and hampers 
the development of a more balanced ecosystem and 
adaptive management approach (Christensen et al. 
1996; Pikitch et al. 2004; Schindler and Hilborn 
2015). Over time and as regulations become more 
layered, elaborate, and codified, the ability to 
mimic naturally variable river flows becomes ever 
more constrained, making it hard to adjust flow 
operations in ways that promote multiple ecosystem 
functions (the focus of the Ecological Flows Tool 
[EFT]). Moreover, because of the premium placed on 
achieving unrealistically high mechanistic certainty 
of aquatic species’ responses to alternative flows 
before actions are implemented (Schindler and 
Hilborn 2015), opportunities for adaptive learning are 
even further constrained. 

Finally, achieving more naturally variable river 
flows is also complicated by the myriad separate 
agencies and programs responsible for interrelated 
(and often overlapping) aspects of flow management 
and riparian restoration. In the SRD, the California 
Department of Fish and Wildlife (CDFW), National 
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Oceanic and Atmospheric Administration (NOAA), 
National Marine Fisheries Service (NMFS), U.S. Fish 
and Wildlife Service (USFWS), State Water Resources 
Control Board (SWRCB), California Department of 
Water Resources (CDWR), U.S. Bureau of Reclamation 
(USBR), and the U.S. Army Corps of Engineers 
(USACE) all have some level of jurisdiction over parts 
of the system.

The EFT is a comprehensive, linked, integrative 
decision-support framework for evaluating how 
specific components of the SRD flow regimes 
can be “specialized” to promote favorable habitat 
conditions for 15 representative species (TNC et 
al. 2008; Alexander et al. 2014) (Figure 1). Since 
the beginning of the EFT’s development in 2004, 
the majority of advice from over 70 participating 
scientists, managers, and disciplinary experts has 
been to adopt a multi-species, multi-indicator 
approach, thus avoiding the paralysis caused by too 
broad a sphere of concern or too much detail on any 
one species. The EFT includes 25 functionally distinct 
life-history indicators for both listed and non-listed 
riparian and aquatic species and habitats. Its habitat 
and species sub-models are informed by existing 
conceptual models that were used to help select the 
EFT’s key indicators (Table 1). These indicators are 
driven by relevant physical measures of flow, water 
temperature, channel migration, salinity and/or river 
stage at a daily (or finer) time-scale (ESSA 2011, 
2013; Alexander et al. 2014). Although the EFT was 
designed to work with any physical model(s) capable 
of producing daily resolution results at required 
locations, in this study, those inputs are provided 
by a standard suite of hydrological tools (described 
later) for evaluating Shasta Dam operations and Delta 
conveyance and water export alternatives. The EFT 
is further linked to models of channel migration, 
soil erosion, and sediment transport (ESSA 2011, 
2013). This broad and unique coupling of multiple 
models enables synthesis evaluations of the potential 
benefits, not only of flow modification, but also of 
riprap removal and gravel augmentation (Larsen and 
Greco 2002; Larsen 2007; Wohl et al. 2015).

Our quest for improved flow management options 
for the SRD is motivated by the pressing need for 
greater flexibility and agility in discovering and 
applying operational rules for the benefit of multiple 
species. A key premise of our research is that 

preferred flow characteristics for a given species or 
habitat are not required every single year. It is both 
impractical and unnecessary to pick a single best 
flow regime, because a flow regime favorable to one 
species (or even to a single life-history stage) may be 
unfavorable to another (Alexander et al. 2014). We 
also recognize that natural selection and evolution 
confer on many species the ability to survive 
and persist during sub-optimal habitat conditions 
(Southwood 1977; Poff and Ward 1990; Tollrian and 
Harvell 1999; Gabriel et al. 2005; Eliason et al. 2011). 
Although these adaptive capabilities have limits (e.g., 
continuous poor habitat conditions year after year 
can lead to extirpation), species resiliency affords 
practical opportunities for flexibility. As examples of 
natural flexibility in the SRD, four Chinook Salmon 
run-types are each adapted to a different season 
and habitat; adult spawners can return from age 2 
to age 6, and juveniles may choose to find refuge 
in cold water habitat or migrate immediately to the 
ocean. 

We hypothesize that a more agile, adaptive state-
dependent approach is needed to manage SRD 
flows — an approach that can systematically evaluate 
many alternative flow regimes on an appropriate 
time-scale and dynamically alter priorities among 
ecological objectives, depending on both current 
hydrologic conditions and the recent history of 
outcomes for these same objectives. The two 
complementary concepts that underpin this approach 
are “turn-taking” between ecological indicators at 
biologically appropriate frequencies, and multi-
objective optimization across all ecological indicators 
over time. Together, we call these concepts Turn-
Taking Optimization (TTO). Our approach allows 
past ecological benefits to be “remembered” in the 
optimization, so that, for example, if a species’ 
ecological indicator target (however defined) has been 
achieved in water year t-1 or earlier, its priority can 
be downgraded for an ecologically appropriate period 
of time, allowing different ecological indicators to 
have a higher priority. In this first demonstration of 
turn-taking benefits, our optimization efforts focus 
on two fundamental attributes of SRD hydrosystem 
management: (1) monthly average water release 
targets for Shasta Dam, and (2) monthly average 
maximum reverse flows in the Old and Middle rivers 
in the Delta. These maximum reverse-flow targets 

https://doi.org/10.15447/sfews.2018v16iss1/art2
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influence water exports into state (the Harvey O. 
Banks pumping plant the CDWR operates as part 
of the State Water Project) and federal (the Tracy 
pumping plant Reclamation operates as part of the 
Central Valley Project) facilities in the Delta. More 
complex water-transfer schemes are possible and 
feasible, but for this first demonstration of TTO with 
EFT we focus, for now, on these two major attributes 
of the SRD hydrosystem.

METHODS

We use coupled eco-hydrologic simulation models 
to compare how a flexible turn-taking approach 
meets the flow needs of multiple ecological indicators 
relative to the current management paradigm. We 
use a baseline Reference Case scenario to compare 
the results of the TTO model. Below, we describe the 
hydrosystem-management actions we considered, the 
ecological indicators we used to evaluate how these 
actions performed, the underlying eco-hydrologic 
simulation models used, and the Reference Case 
scenario. Finally, we present in more detail the logic 
that underlies the proposed flexible TTO model itself.

Study Area

The study area comprises two linked eco-regions 
within the SRD hydrosystem: (1) the upstream main 
stem of the Sacramento River between Keswick and 
Colusa; and (2) the Delta estuary downstream of 
Fremont Weir, including the Yolo Bypass, Grizzly 
Bay, and Suisun Bay (Figure 1). The EFT model 
(ESSA 2011, 2013) was developed for key habitat and 
species indicators within these two eco-regions.

Management Actions Evaluated

The study considers how to flexibly optimize 31 
ecological performance indicators (Table 1) over 
multiple years using a 12-month management 
cycle (October 1 to September 30). Each year, two 
management actions are evaluated: (1) a monthly 
schedule for target releases from Shasta Dam, and 
(2) monthly average maximum reverse flow (MRF) 
targets in the Old and Middle rivers (which influence 
water exports from the Tracy and Banks pumping 
plants). Many other potential management actions 
exist for the SRD, such as water transfers between 

reservoirs and groundwater banking; but Shasta 
Dam releases and Delta exports affect flows the 
most overall, and are sufficient to demonstrate 
the possibilities of the TTO approach. It is also 
important to recognize that the implementation 
of these management actions using the physical 
models described below is subject to other objectives, 
values, and constraints. Often, the target Shasta 
Dam releases and target MRF are not achieved in 
various years because of the interacting effect of the 
priority weights placed on these other objectives (e.g., 
rule-sets that represent Water Right Decision 1641 
[D–1461] in CalSim 2).

Figure 1 The two eco-regions included in the study: an 
upstream region from Keswick to Colusa, and an estuarine region 
downstream of Fremont Weir
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Table 1 Ecological indicators defined by the Ecological Flows Tool, with abbreviated EFT codes in parentheses. For salmonids, the 
indicators are repeated for each of five groups: fall, late-fall, winter, and spring Chinook Salmon and Steelhead. A subset of 31 indicators 
considered in the optimization study are marked with ‘+.’ Those marked with ‘–’ note the reason for exclusion. 

Ecological Indicator Present Rationale for Exclusion

Upper Sacramento River Eco-region

Salmonid run types: fall, late-fall, winter, spring, Steelhead

WUA spawning (CS1) +

WUA rearing (CS2) +

Egg-to-fry survival (CS3) – Negligible range of variation

Juvenile stranding (CS4) +

Redd scour (CS5) – Negligible range of variation

Redd dewatering (CS6) +

Fremont cottonwood

Initiation success (FC1) +

Scour risk (FC2) – Sporadic

Bank Swallow

Habitat potential (BASW1) – Negligible range of variation

Inundation/sloughing risk (BASW2) – Meander simulation unavailable

Western pond turtle

Large woody debris (LWD1) – Meander simulation unavailable

Green Sturgeon

Egg development (GS1) – Negligible range of variation

Sacramento Delta Eco-Region

Salmonid run types: fall, late-fall, winter, spring, Steelhead

Growth in Yolo Bypass (CS7) – Included through smolt temperature stress

Passage time (CS9) – Included through smolt temperature stress

Smolt temperature stress (CS10) +

Delta Smelt

Spawning success index (DS1) +

Habitat quality index (DS2) +

Entrainment risk (DS4) +

Splittail

Yolo Bypass spawning habitat (SS1) +

Longfin Smelt

Abundance Index (LF1) +

Invasive deterrence

Egeria suppression (ID1) – Requires large floods

Corbula suppression (ID2) – Requires large floods

Corbicula suppression (ID3) – Requires large floods

Tidal wetland habitat

Brackish (TW1) – Digital Elevation Model (DEM) simulation unavailable

Freshwater (TW2) – Digital Elevation Model (DEM) simulation unavailable

https://doi.org/10.15447/sfews.2018v16iss1/art2
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Multiple Ecological Flow Needs and  
Ecological Indicators

The 31 ecological indicators used in this study are a 
flow-sensitive subset of a larger set the EFT simulated 
(Table 1). These 31 EFT indicators represent important 
facets of the life-history needs of nine focal species 
and salmonid run-types, for both listed and non-listed 
riparian and aquatic species. The development of each 
EFT indicator was based on a logical progression of 
steps that began with the development of cause-and-
effect conceptual models that link physical regime 
to representative life-history habitat and the related 
survival needs of the focal species (ESSA 2011, 
2013). Candidate species and indicators were vetted 
through a review of existing conceptual models in the 
literature as well as expert design input and review 
during several workshops (see ESSA 2011, 2013). 

Each ecological indicator’s output depends on 
functional relationships that can include flow, water 
temperature, river stage, and salinity at a daily 
time-scale at relevant locations within the SRD 
(see Appendix H in Alexander et al. 2014). The EFT 
creates two broad classes of output across a range of 
spatial and temporal scales. The first class consists 
of continuous-value variables such as “square feet 
of spawning habitat.” The second class consists of 
categorical versions of the continuous variables 
using a three-level suitability rating (Good, Fair, 
or Poor) based on one of three general methods 
(see Table 2.10 and Appendix G in Alexander et al. 
2014). Continuous and categorical measures provide 
complementary ways to characterize improvement 
and degradation of the EFT indicators.

Comparing Against a Reference Case Scenario

We used the 2011 Delivery Reliability Report (DRR) 
study (CDWR 2012a, 2012b) as our Reference Case 
scenario, comparing its ability to meet ecological 
needs against the TTO approach our study 
advocates. The Reference Case scenario provides a 
contemporary and publicly available snapshot of 
current management and operational practices for the 
Sacramento River and Delta. The simulation period 
available for comparing the benchmark DRR scenario 
with the TTO approach was restricted to the 16-year 
period from water year 1976 to 1991— a constraint 

introduced by the calibration period of the Delta 
Simulation Model II (DSM2) model described below.

Linked Eco-Hydrologic Models

The Reference Case scenario and the turn-taking 
algorithm described later both depend on a group 
of five physical models that provide the inputs the 
EFT used to compute the 31 ecological indicators for 
this study. We briefly describe these five component 
models below. By definition, the cumulative 
assumptions and uncertainties present in these 
driving physical models of flow, water temperature, 
river stage, and salinity are carried forward to 
affect the analysis results the EFT generates. Our 
use of these models and the EFT itself emphasizes 
comparative findings among multi-year scenario 
alternatives rather than focusing on absolute 
predictions during specific years, months, or days. 
An accounting of the limitations, weaknesses, and 
strengths of these physical models, although a 
fundamental consideration, is beyond the scope of 
this paper. Readers interested in learning more are 
directed to Ferreira et al. (2005) and Ford et al. (2006) 
and other references that immediately follow below.

CalSim 2

CalSim 2 is a generalized reservoir–river basin 
simulation model commonly used for planning 
studies related to SWP and CVP operations. The 
model is based on input priorities, targets, and a 
variety of constraints, and determines monthly 
river flows and diversions, Delta flows and exports, 
reservoir storage, and deliveries to project and non-
project users (CDWR 2000: Draper et al. 2004: USBR 
2008a). Other inputs to CalSim 2 include system 
connectivity and capacity information and regulatory 
requirements, as well as water diversion requirements 
(demands), stream accretions and depletions, rim 
basin inflows, irrigation efficiencies, return flows, 
non-recoverable losses, and groundwater operations. 
CalSim 2 produces monthly outputs for river flows 
and diversions, end-of-month reservoir storage 
volumes, and Delta flows and exports. CalSim 2 
results are commonly used as inputs to determine 
water quality, hydrodynamics, and particle-tracking 
in the DSM2 model (described below). Using a 
proprietary Mixed Integer Linear Programming solver, 
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CalSim 2 normally operates on a monthly time-scale 
over the water year 1922–2003 period. Much of the 
model’s input and output is carried out through Data 
Storage System (DSS) files (USACE 2009). Because 
the solver is proprietary, our implementation of the 
optimization system places CalSim on the desktop 
computer that houses the solver license, although 
conceptually it is more appropriate to consider it a 
component of the optimization “particles” described 
below.

USRDOM

The Upper Sacramento River Daily Operations Model 
(USRDOM) models the flows and related operations in 
the Upper Sacramento River from Keswick to Knights 
Landing on a daily time-scale, down-scaling the 
monthly time-step of CalSim 2 to a daily scale. The 
USRDOM was developed using the HEC-5 software. A 
detailed description of the USRDOM and the temporal 
down-scaling process can be found in CH2M Hill 
(2011).

USRWQM

The Upper Sacramento River Water Quality Model 
(USRWQM) was also developed using HEC-5A 
software to simulate (using 6-hour meteorology) 
mean daily reservoir and river temperatures at key 
locations on the Sacramento River as far downstream 
as Knights Landing, using daily flows from USRDOM 
as input. A more detailed description of USRWQM 
and the temporal downscaling process is included in 
a Resource Management Associates (RMA) calibration 
report (RMA 2003), and further background on 
USRWQM can be found in USBR (2008b).

DSM2

The Delta Simulation Model version 2 (DSM2) is a 
one-dimensional hydrodynamic simulation model 
used to simulate hydrodynamics, water quality, and 
particle-tracking in the SRD (USBR 2008c). The model 
has three interacting sub-models — HYDRO, QUAL, 
and PTM — that simulate, respectively, velocities and 
water surface elevations; the fate and transport of 
conservative and non-conservative water quality 
constituents including salts; and transport of 
neutrally buoyant particles.

EFT

The EFT is a multi-species decision-support 
framework for evaluating how specific components 
of the flow regimes can be “specialized” to promote 
and balance favorable habitat conditions for 15 
representative species within the SRD (Alexander 
et al. 2014). The EFT incorporates simulated 
(and historical) output from the preceding suite 
of hydrologic models, which together provide 
combinations of daily flow, water temperature, 
salinity, and river stage. Salinity and river stage are 
used only downstream of Knights Landing in the 
Delta. The EFT predicts up to 61 ecological indicators 
for 15 species and salmonid run-types in the Upper 
Sacramento River and Delta (ESSA 2011, 2013; 
Alexander et al. 2014). Consolidating the salmonid 
run-types, the EFT includes 25 functionally distinct 
ecological indicators. In the application described 
in this paper, we performed our TTO simulations for 
nine focal species and used 31 EFT indicators rather 
than the full set of 61 (Table 1). 

Turn-Taking Optimization (TTO) 

Recurrence Frequency and Turn-Taking 

The two central ideas behind TTO are recurrence 
frequency and turn-taking. Recurrence frequency 
(RF) recognizes that most species are adapted to 
variable flows (periods of drought and flood) and 
do not require ideal or desired conditions every year 
to sustain a viable population (Tollrian and Harvell 
1999; Gabriel et al. 2005; Eliason et al. 2011). As 
a result, most aquatic and riparian species will be 
successful provided the population experiences 
favorable life-history events at an appropriate 
frequency. In our simulations, RF is defined for each 
EFT indicator (e.g., “species indicator j should achieve 
a favorable or ‘Good’ outcome in at least 2 out of 4 
years”) and these rules are used by the TTO algorithm 
to adjust indicator priority weights each year. The 
“appropriate frequency” for RF is an important 
assumption, and may not always be constant through 
time. Table 2 shows the RF criterion (a customizable 
value) for each EFT indicator used in our simulations. 

Turn-taking refers to the notion that once an 
indicator’s RF has been met, that indicator is not 
targeted for optimization in the immediate future 

https://doi.org/10.15447/sfews.2018v16iss1/art2
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year(s) until the RF period expires. In this way, 
different EFT indicators take turns being prioritized 
for optimization, providing flexibility for various 
indicators to receive greater consideration in the 
intervening years. Thus, the potential solutions 
identified by the optimization algorithm depend on 
the hydrologic properties of individual water years as 
well as the recent history and record of successes for 
each ecological indicator. We note that an ecological 
indicator can achieve a Good outcome without being 
explicitly assigned a high priority for optimization 
if the hydrologic conditions happen to be favorable 
for that indicator in a given simulation year and 
solution. The TTO paradigm includes this notion 
of incidental success so that indicators are deemed 
successful if they receive a favorable indicator rating 
and/or RF is met.

Figure 2 demonstrates through a hypothetical 
example the integration of ecological indicator 
performance with the RF concept: the rule of 

achieving RF and/or receiving a categorical Good 
score is met in 10 of 13 of the TTO solution scenario 
years, and 8 of 13 of the Reference Case scenario 
years, indicating that the TTO model’s water release 
solution is an overall improvement. 

The Optimization System — Particle Swarm 
Optimization

The value of a computationally based optimization 
algorithm is clear given both the large number of 
species and indicators (ESSA 2011, 2013) and the 
non-linear relationships that exist between these 
indicators and their driving physical variables (daily 
flow, water temperature, river stage, and salinity). 
We used a Particle Swarm Optimization (PSO) with 
Crowding Distance (Raquel and Naval 2005) to 
traverse the high-dimensional EFT search space to 
discover sets of optimal solutions (defined below) 
for each year’s prioritized set of EFT indicators. 

Table 2 Recurrence frequencies (RF) for ecological indicators from the upper Sacramento and Delta eco-regions. In any given year, a given 
indicator’s RF is met if it has the required number of Good years in the moving window of current and previous years.

Ecological Indicator Good 
years

Moving 
window 
(years)

Upper Sacramento River Eco-Region

Salmonid run types: fall, late-fall, winter, spring, Steelhead

Spawning WUA 2 4

Rearing WUA 2 4

Juvenile stranding 2 4

Redd dewatering 2 4

Fremont cottonwood

Initiation success 1 8

Sacramento Delta Eco-Region

Salmonid run types: fall, late-fall, winter, spring, Steelhead

Smolt temperature stress 1 3

Delta Smelt

Spawning success index 1 2

Habitat quality index 1 1

Entrainment risk 1 1

Splittail

Yolo Bypass spawning habitat 4 10

Longfin Smelt

Abundance Index 4 10
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PSO is inspired by the social biological phenomena 
of bird flocking and fish schooling (Kennedy and 
Eberhart 1995), with the underlying hypothesis that 
the social sharing of information among conspecifics 
increases the fitness of individuals. In PSO parlance, 
an individual is called a “particle” (Raquel and Naval 
2005). Driven by search rules, groups of particles 
move in a multi-dimensional search space in which 
every location represents a simulation that produces 
a solution to some specified problem.

Particles work cooperatively to search for locations 
that correspond to better solutions to the problem 
(collections of Good conditions for EFT indicators), 
ultimately converging upon a few locations that 
represent alternative optimal solutions. The set of 
equally viable solutions among objectives is called a 
Pareto front (Raquel and Naval 2005). Over repeated 
sets of simulations, a high-dimensional Pareto-
optimal response surface is probed and quantified, 
and these optimal solutions are identified. When 
optimizing for multiple objectives, the model can find 

many such solutions, each of which may achieve the 
same overall value for the objective, indicating that 
trade-offs may exist among the values of each of the 
objectives (Raquel and Naval 2005). 

Unlike biological systems, where fitness is defined 
as an individual’s ability to propagate, PSO theory 
uses the term more liberally, with fitness defined 
as the value of the objective function. In our case, 
the objective function consists of Good conditions 
for the 31 EFT indicators, and changes each year 
as RF is met and priorities shift. Each EFT indicator 
contributes to the objective function, and each 
indicator’s value depends in unique ways on daily 
flow, water temperature, river stage, and salinity 
(Table 1) — with functional forms that range from 
linear to non-linear and discontinuous relationships.

In the PSO algorithm, information sharing among 
particles is the key feature that distinguishes PSO 
from approaches such as Genetic Algorithms (GA), 
which operate using processes analogous to natural 

Figure 2 Example of the recurrence frequency (RF) concept, beginning with a continuous-value ecological indicator (top panel) under two 
hypothetical scenarios: TTO Solution (dashed line) and Reference Case (solid line). Given the ecological indicator’s suitability threshold value 
(green ‘Good Threshold’), some annual results receive a Good categorical score (filled circles). In this example, RF is computed using a rule 
in which the indicator’s RF is met if it has two Good years in a 4-year moving window (the rule used for salmonids in this study). Filled circles 
(bottom set) represent years where a categorical Good score and/or RF is met; with open circles otherwise. In this hypothetical example, the 
Reference Case scenario (solid line) receives a categorical Good score and/or meets RF in 8 of 13 years, compared to 10 of 13 years for the 
TTO solution (dashed line). Note: by definition, RF is not computable for the first 3 years.

https://doi.org/10.15447/sfews.2018v16iss1/art2
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selection: selecting strategies (the equivalent of PSO 
particles) that have the highest fitness (Axelrod 
1997; Forrest 1993). We chose PSO over GA for 
two reasons. First, PSO performs better at exploring 
the entire solution space compared to a GA search 
(Raquel and Naval 2005). Second, the R statistical 
computing software (R Development Core Team 2014) 
for MOPSO-CD (Multi Objective PSO with Crowding 
Distance) (Naval 2013), had a readily available 
package that extends PSO in two ways: by including 
multiple objectives and by having particles avoid 
“crowding” around solutions, which leads to better 
exploration of the search space.

The goal of a Multiple-Objective Particle Swarm 
Optimization (MOPSO) search is, therefore, twofold: 
first, finding solutions that are close to the true 
Pareto front and approximate the Pareto optimal 
set; and second, ensuring that the search is well 
distributed across the front (Raquel and Naval 2005). 
One of the major obstacles of both simulation and 
analytical optimization algorithms is the convergence 
of solutions to local optima that are not truly 
global optima. For PSO algorithms, this crowding is 
addressed by “over-shooting” optima using mutation 
operators to explore unknown regions of the search 
space (Kennedy and Eberhart 1995; Naval 2013). 

Setting Parameters for TTO 

The optimization system we developed is based 
on the pre-existing EFT linked to the hydrologic 
simulation models that are in common use in 
the study area — all embedded within the MOPSO 
algorithm described above. All these simulation 
components are customized so they work within 
a single simulation year rather than in the multi-
decadal period. Our customization of the physical 
models considerably increased their agility, but 
otherwise adhered to the same system-operation rules 
as the DRR 2011 Reference Case scenario.

Each particle in our MOPSO algorithm stores 24 
parameters that represent management actions: 
monthly targets for the Shasta release schedule, 
and monthly MRF targets in the Old and Middle 
rivers (which constrain Delta exports). At the start 
of a simulation, each MOPSO particle is assigned a 
suite of 12 monthly Shasta releases from a uniform 
random distribution between 3,250 and 11,000 cubic 

feet per second (cfs). The lower bound for releases 
is based on the absolute minimum in-stream flow 
limit for the Sacramento River, and the upper limit 
is based on a review of the preferred flow ranges 
for the ecological indicators. We took twelve 
monthly initial MRF values from a uniform random 
distribution between 0 and 15,000 cfs, limits based 
on the full range of pumping options for the Tracy 
and Banks pumping facilities. 

Implementing the TTO Model

After considering computing costs, we performed the 
simulations using 20 particles. In our comparative 
tests of MOPSO algorithms, we saw no demonstrable 
change performance across a range of 20 to 100 
particles (a finding consistent with advice in Bratton 
and Kennedy 2007). 

We used the Good/Fair/Poor categorical outcomes 
the EFT produced as the basis for each ecological 
indicator (see Alexander et al. 2014, Section 2.7). 
In preliminary tests, we found that the EFT’s Good/
Fair/Poor three-level categorical measures, simplified 
to Good and Not-Good, provided much faster 
convergence within a reasonable time-frame than the 
EFT’s continuous measures (e.g., “weighted useable 
area of spawning in square feet”), which often did 
not converge at all. In addition to faster convergence, 
binary response is more consistent with the concept 
of turn-taking after a target biological suitability 
threshold (i.e., a Good score) has been achieved.

The iterative search for improvements to a given 
year’s prioritized subset of 31 ecological indicators is 
termed a “generation,” and is made through changes 
to each particle’s monthly schedule. After the initial 
randomly-generated set of release/MRF schedules, 
each subsequent generation produces an updated set 
of results for our 31 categorical indicators, which 
are used to create the next generation of 20 release/
MRF monthly targets provided to each particle. 
Following the MOPSO paradigm, the specific values 
for each particle’s release/MRF target are based on 
the collective previous searches of all the particles, as 
the 31 ecological indicators vary in response to the 
set of release/MRF inputs. Particles with a release/
MRF target that gives a higher value for the objective 
function retain their existing target; other particles 
generate new release/MRF targets based on the 
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MOPSO algorithm conditions. This process is repeated 
until convergence is achieved, at which point the 
water year simulation time-step is completed. 

We defined convergence as seeing no change in 
the number of the multi-objective optima for five 
successive generations. For example, if by the sixth 
generation three unique and equally viable solutions 
were discovered and the solution set did not change 
for the next five generations, then we judged 
convergence to have been reached in the eleventh 
generation. Based on preliminary simulation tests, 
we set an upper bound of 20 generations to reach 
convergence, but this boundary was never reached. 
Typically, a solution set was discovered in seven 
generations. After an annual water year simulation 
time-step, if the MOPSO algorithm finds multiple 
equally viable solutions, the historical release 
target from each of these solutions is given equal 
probability of being selected as the release/MRF 
target for the following water year.

We executed each particle simulation using cloud-
based Amazon EC2 Windows 2008R2 servers, 
dramatically reducing overall processing time by 
running simulations in parallel. We scheduled the 
computing activities of the cloud-based servers 
through interaction with a single batch run control 
(BRC) server housed with the MOPSO optimization 
software. The cloud-based server implementation 
employed Cygwin Unix emulation software  
(http://www.cygwin.com) and custom shell scripts 
to provide programmatic control over the various 
components, allowing them to run unattended. 
An individual particle simulation required about 
5 minutes. Each server operated continuously and 
autonomously — requesting, locking, and processing 
work units, ultimately providing EFT results to the 
BRC and the optimization engine. Operating with 20 
servers, the 16-year simulation took about 26 hours.

Figure 3 shows the main features of the overall 
optimization system. Optimization is driven by two 
agents: (a) the MOPSO algorithm and software, linked 
to (b) a supervisory BRC server that schedules the 
remote simulation engines, among other simulation-
management tasks. Over the course of iterative 
generations, the optimization engine proposes a set of 
monthly releases and MRF targets that are provided 
(1, 2) to CalSim 2 via the BRC database. CalSim 2 

produces a schedule for monthly hydrosystem 
operation targets that is passed (3, 4) through the 
database to an available cloud server. On the cloud 
servers, USRDOM downscales the CalSim 2 output 
from monthly to daily flow for the Upper Sacramento 
River, passing that information (5) to USRWQM, 
which simulates water temperatures. In a separate 
task, the CalSim 2 output for the Delta is processed 
for running DSM2. Finally, both Sacramento and 
Delta hydrologic output are passed to the EFT (6, 7), 
which simulates the ecological consequences for 
the nine focal species and 31 indicators for the 
water year. The EFT output is passed through the 
database (8) to the optimization engine (9), which 
tracks recurrence frequency for indicators with Good 
scores, updates the priorities amongst EFT species 
and indicators, and searches for sets of optimal 
solutions. The iterative search for solutions ends 
at convergence, or when the maximum number of 
generations has been reached.

Figure 3 Overview of the optimization system. Numbered steps 
show the sequence of information flow that takes place during 
each generation step, every water year. See text for further 
details.

https://doi.org/10.15447/sfews.2018v16iss1/art2
http://www.cygwin.com
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RESULTS

Ecological Performance

Cumulative performance measures for each indicator 
across all study years indicate that the TTO solutions 
tended to outperform the Reference Case scenario 
solutions. Of the 31 EFT indicators, 12 improved, 14 
were unchanged, and 5 performed worse using TTO 
(Table 3). Figure 4 shows the cumulative performance 
of each indicator over water years for the Reference 
Case scenario and two equally viable TTO solutions.

When grouped by focal species, four of nine species 
improved (more improved indicators than worsened 
indicators): late-fall Chinook, winter Chinook, spring 
Chinook, and Fremont cottonwood. Within the 
salmonid indicators, there is also an indication that 
some ecological indicators (e.g., see salmonid juvenile 
stranding, Figure 7) succeed or fail as a group. The 
only species that performed consistently worse under 
TTO was Steelhead, which experienced improved 
performance for one indicator, no change for two 
indicators, and worse performance for two indicators 
(Table 3). Fall-run Chinook, Delta Smelt, Splittail, 
and Longfin Smelt all performed approximately the 
same as the Reference Case scenario. 

In some cases, EFT indicator worsening may be tied 
to those indicators that have a temporal window 
spanning the October 31 water year boundary.
For example, the temporal window for Steelhead 

weighted usable area [WUA] rearing spans the entire 
water year, peaking between July and October. Since 
the indicator cannot be completely evaluated based 
on the flow in one water year only, it becomes 
insensitive to the optimization process. A further 
explanation for some worsened indicators is found 
in tightly bound negative correlations. For example, 
fall Chinook WUA rearing is maximized at flows of 
about 4,000 cfs, while fall Chinook juvenile stranding 
is minimized at about 5,000 cfs. In this case, any 
optimization search will not be able to find flows 
that reconcile the different requirements — an instance 
of Jagger’s Law. 

Hydrosystem Effects of Re-Operation

Our analysis of TTO solutions indicates it does not 
introduce any egregious effects on hydrosystem 
performance in terms of draw-down of Shasta 
Reservoir. But, not surprisingly, release and export 
timing changes. Figure 5 shows the consequence 
of TTO on discovering and choosing solutions from 
1976 to 1991 for key flow metrics for the two 
equally viable solutions relative to the Reference Case 
scenario. The differences in the time-series include 
modest differences between the Reference Case 
scenario and the TTO solutions (Figure 5). 

To characterize the hydrosystem effects, we 
calculated monthly release, storage, and export 
statistics for the Reference Case scenario and the 
final two 1991 solutions over the 16-year simulation 
period using a paired t-test; we also compared 
standard deviations (Table 4). The results for the 
two final TTO solutions are similar, and show that 
the TTO solutions have lower average releases from 
Shasta Reservoir (P < 0.01), slightly higher Shasta 
Reservoir storage (P < 0.01) and higher average 
positive flows in the Old and Middle rivers compared 
to the Reference Case scenario (P < 0.01 and P < 0.01, 
respectively). Variability within the MOPSO solutions 
was also lower compared to the Reference Case, with 
standard deviations that are 90%, 86%, and 81% of 
the Reference Case scenario for release, storage, and 
exports, respectively.

Although Shasta Reservoir releases, Shasta storage, 
and Old and Middle river flows show broadly similar 
seasonal patterns over the 16-year simulation period, 
the timing of changes at shorter time-scales differs 

Table 3 Comparison of MOPSO and Reference Case solutions 
for 1976–1991 based on data shown in Figure 4, grouped by 
species for Sacramento River and Delta (SRD) eco-regions

Indicator Number
TTO relative to Reference Case

Improved Same Worse

Fall Chinook 5 2 1 2

Late-fall Chinook 5 1 4

Winter Chinook 5 5

Spring Chinook 5 2 2 1

Steelhead 5 1 2 2

Fremont cottonwood 1 1

Delta Smelt 3 3

Splittail 1 1

Longfin Smelt 1 1

Total 31 12 14 5
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Figure 4 Proportion of years receiving a categorical Good score and/or achieving RF target for 31 ecological indicators, for the final two TTO 
solutions compared with the Reference Case. Filled circles indicate a 100% score in the indicator-specific moving window from 1976 to 1991.
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Figure 5 Selected flow 
characteristics of the full 16-year 
simulation. The Reference Case 
is shown with a solid line; TTO 
solutions are shown with broken 
lines. Shasta Reservoir releases 
(monthly CalSim 2 inputs) are 
shown in the upper panel, 
Shasta Reservoir storage in the 
middle panel, and maximum 
reverse flow (MRF) targets 
(monthly CalSim 2 inputs) in 
the lower panel. Releases are 
generally less extreme in the 
TTO model simulations; seasonal 
storage patterns are broadly 
similar, with notable differences 
in specific years. In the final year 
(1991), the two ending solutions 
(TTO-A, TTO-B) are shown.

Figure 6 Selected flow 
characteristics of the 1991 water 
year simulation. The Reference 
Case scenario is shown with 
a solid line; TTO solutions are 
shown with broken lines. Shasta 
Reservoir releases (monthly 
CalSim 2 inputs) are shown in the 
upper panel, Shasta storage in 
the middle panel, and maximum 
reverse flow (MRF) targets 
(monthly CalSim 2 inputs) in the 
lower panel. Shasta Reservoir 
releases are higher during 
winter and lower in summer for 
both TTO solutions, compared 
to the Reference Case. Shasta 
Reservoir storage remains 
consistently lower for the 
Reference Case, with declining 
storage in this year for both 
the Reference Case and TTO 
solutions.
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notably. For example, the upper panel of Figure 5 
shows that, in most years, Shasta release patterns 
found by the TTO model found are generally less 
extreme than the Reference Case scenario — usually 
with higher spring and lower summer flows compared 
to the Reference Case. A more detailed example 
from 1991 is shown in Figure 6. In this example, 
the key timing differences can be seen in the form 
of higher early winter releases and lower releases in 
late summer for all TTO solutions compared to the 
Reference Case. Higher Shasta storage profiles for 
the TTO solutions are a consequence of simulations 
in previous years that set the initial conditions 
for the 1991 water year, and that are maintained 
throughout the year. It was beyond the scope of this 
first demonstration of the TTO approach to determine 
whether these timing shifts would be acceptable to 
individual water users awaiting deliveries.

Over the 16 years we simulated, the number of 
equally viable solutions generated by the MOPSO 
algorithm ranged from one to four, with no 
indication that these high-level differences relate 
to the CDEC water year type (SWRCB 1995). An 
example for water year 1991 is shown in Figure 7. 
In this year, the MOPSO algorithm identified two 
equally viable solutions, each consisting of a different 
combination of 15 ecological indicators that achieved 
a Good score or met the Recurrence Frequency (RF; 
see below), compared to the Reference Case, which 

achieved a Good score and/or achieved RF for 13 
indicators. Fourteen indicators (e.g., WUA spawning 
for fall-run Chinook) achieved a Good score and/
or achieved RF across both TTO model solutions. 
We have not expressed the count of ecological 
indicators as proportions because some species have 
more ecological indicators associated with them 
than others. If expressed as proportions, this leads 
to unequal weighting of species to the overall value, 
which could be misleading.

Table 4 Upper two rows show difference (TTO - Reference) 
between monthly average metrics for TTO and Reference Case 
solutions, 1976–1991. Positive values indicate that the TTO 
solution exceeds the Reference Case solution. All differences 
are significant at P < 0.01. Bottom three rows show standard 
deviations.

Solution

Shasta 
release 
(ft3 s–1)

Shasta 
storage 

(TAF)

Old and 
Middle River 

flows 
(ft3 s–1)

Difference from reference

A -712 82 645

B -733 97 640

Standard deviation

Reference 6185 894 4790

A 5586 776 3861

B 5594 756 3877

Figure 7 Circles show ecological indicators (rows) which have 
a categorical Good score and/or achieve their RF for each of the 
optimal solutions identified by the MOPSO search, compared 
to the Reference Case scenario. These results are for the 1991 
water year, with 15 indicators meeting the criteria for each of the 
two MOPSO solutions, compared to 13 for the Reference Case.
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Increased Flexibility through Turn-Taking

The implementation of turn-taking via the concept of 
RF shows that the ecological indicators prioritized for 
optimization can change over time, as they encounter 
appropriate conditions over a moving window 
of years (Table 2). Figure 8 shows that Fremont 
cottonwood was a priority in 1977 and 1978. Since it 
received a Good categorical score in 1978, it was not 
a priority for the next 7 years, which allowed other 
ecological indicators to have a greater influence in 
the TTO model search for viable solutions. A more 
complex example of turn-taking can be seen for 
winter-run Chinook and Steelhead (upper two rows 
of Figure 8), each of which met RF for two of five 
indicators in 1984 and 1985. In contrast, in 1986 
and 1987, four of five winter-run Chinook indicators 
met their RF, compared to zero of five indicators for 
Steelhead. This change effectively switches priorities 
from winter-run Chinook indicators to Steelhead 
indicators, creating additional flexibility to meet 
Steelhead objectives.

DISCUSSION

Developing greater awareness of the value of 
flexibility to manage ecosystem trade-offs over 
time is a pressing need. California’s native fish and 
riparian species have adapted to the state’s widely 
variable climate, and these evolutionary adaptations 
have helped species persist during extended droughts 
and other forms of extreme water fluctuation. This 
feature of species life-history adaptation can, within 
reason, be exploited to develop state-dependent 
priorities and turn-taking rules (RFs), allowing more 
species to “win” more often. This investigation 
illustrates that operation of the California water 
system can be changed by using TTO to time releases 
from reservoirs and water exports to benefit a wider 
range of species without (1) arbitrarily constraining 
the number of species and indicators considered, (2) 
over-simplifying ecological flow targets, or (3) having 
major adverse consequences on storage and water 
exports.

Figure 8 Circles show changing priorities from 1976 to 1991. For presentation purposes, rows represent the average priority for groups of 
ecological indicators: one for Fremont cottonwood, three for Delta Smelt, and five for salmonids, using dot size and transparency to indicate 
priority. Ecological indicators that show no change over the entire period have been omitted.
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Based on current management practices embodied by 
the Reference Case, using TTO improved conditions 
for twelve indicators; fourteen showed no change, 
and five showed reduced suitability. When the nine 
groups are grouped by species and life-history, 
four show improved performance (late-fall-run 
Chinook, winter Chinook, spring Chinook, and 
Fremont cottonwood), four show no change (fall-run 
Chinook, Delta Smelt, Splittail and Longfin Smelt), 
and one group shows worse performance (Steelhead, 
which experienced improved performance in one 
indicator, no change in two, and worse performance 
in two). Both listed species (winter Chinook and 
Delta Smelt) performed better or the same when TTO 
rather than the current management paradigm was 
used, demonstrating the promise of this approach. 
However, despite these significant improvements over 
the Reference Case scenario, our results — and Jagger’s 
Law — indicate that there are always a few “losers.”

Traditional model studies using CalSim 2 aim to find 
a single solution that works best over an extended 
82-year period (or for specific water-year types). This 
approach is intrinsically less agile than TTO, which 
considers each year on its own and dynamically 
adjusts priorities from one year to the next. In three 
previous examples studied — BDCP, NODOS, and 
Shasta — the differences in ecological performance 
among scenarios were usually unimpressively small 
(Alexander et al. 2014). In our study, we show that 
TTO can improve about twice as many ecological 
indicators as the traditional approach of optimizing 
over a long period of record. 

Although this case study focuses on the application 
of the EFT in California, TTO provides a flexible 
framework to better balance multiple values for 
key objectives that can be generalized to any 
jurisdiction. The objectives, RF assumptions, and 
other rules can be revised and TTO applied to other 
linked decision-support tools. Within the California 
hydrosystem context, although the EFT currently 
leverages existing generally-preferred physical models 
for the SRD — CalSim 2, USRDOM, USRWQM, and 
DSM2 (ESSA 2011, 2013) — TTO and the EFT are not 
intrinsically tied to these specific models and could be 
implemented with any hydrosystem model(s) able to 
appropriately resolve temporal and spatial data inputs. 
Furthermore, although we have implemented a daily 
time-scale approach appropriate to the SRD, other 
levels of resolution that involve coarser or finer time-
scales, or different geographical scales, are equally 
feasible, depending on the needs of the ecological 
models and the availability of physical data.

Our case study implementation of TTO using the 
EFT did not directly optimize social and economic 
indicators because CalSim 2 is responsible for this 
function. Balancing human factors and the ecological 
needs of focal species is essential to modern decision-
making (Yang 2011; Tsai et al. 2015). Although 
CalSim 2 represents vitally important aspects of 
water deliveries and flood protection, many of these 
important characteristics are currently considered 
to be fixed model constraints, and effectively 
“inaccessible” to our TTO approach. Future analyses 
could be adapted to explore trade-off outcomes 
derived from application of TTO to both socio-
economic objectives and multiple ecological 
objectives. For example, the Water Evaluation and 

Table 5 Number of ecological indicators that have a categorical 
Good score and/or meet their RF in multiple water years, with 
the Reference Case for comparison. Labels (A, B) denote equally 
viable solutions in a water year. Annual CDEC water year types 
are shown in the Type column: W=Wet, AN=Above Normal, 
BN=Below Normal, D=Dry, C=Critically Dry (SWRCB 1995).

Year
Water 
year 
type

Reference
Solution

TTO-A TTO-B

1976 C 10 16 14

1977 C 13 17 17

1978 AN 15 19

1979 BN 14 18

1980 AN 17 16

1981 D 12 15

1982 W 18 23

1983 W 16 23 23

1984 W 15 20

1985 D 15 20

1986 W 10 15

1987 D 12 14 15

1988 C 13 13 14

1989 D 13 15

1990 C 12 15

1991 C 13 15 15
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Planning (WEAP) model (Sieber and Purkey 2015) 
has been identified as an alternative hydrologic 
simulation system, recently customized for use in 
California (Rayej 2012; SWRCB c2017), that might 
be more amenable for use with TTO and the EFT. 
The Sacramento WEAP implementation includes 
representation of groundwater sources and sinks, 
and finer spatial resolution on agricultural and 
community water-delivery requirements. 

To facilitate convergence, we used categorical 
Good scores as the criteria to optimize ecological 
indicators rather than continuous values, lowering 
the resolution of the objective function by 
simplifying the problem to a binary (yes/no) search 
result for each of the 31 indicators. Future work 
could examine whether an increase in the number 
of categories (e.g., Very Good, Good, Moderate, 
Poor, Very Poor) would improve model performance 
or identify other optimal solutions. Although our 
modeling did not alter the overall default priority 
and constraint scheme inherent in CalSim 2, we 
nevertheless recommend future investigations that 
use TTO to confirm that CalSim’s (or other model’s) 
representation of allowable departures of time-
period-specific water deliveries are observed to a 
satisfactory degree. This would require additional 
consultation with professionals knowledgeable about 
the negotiating space available for water deliveries, a 
fundamental step beyond the scope of this paper.

Refinement of the TTO model could also include 
finer-scale priority setting among indicators. 
Currently, priority weights are assigned a value 
of zero or one (off/on), but this could be modified 
to incorporate higher values (e.g., zero to 10) that 
emphasize indicators (that some may feel are) more 
important to optimize (e.g., listed species). However, 
we anticipate movement in this direction would 
constrain multi-species ecological benefits that 
are prized by the EFT and TTO. Refinements might 
also include widening the temporal span of each 
simulation year so ecological indicators that span 
the water year boundary (e.g., Steelhead) are better 
optimized. 

Additionally, future refinements could expand 
optimization to include releases from other reservoirs 
within the SRD system, which could provide 
additional temporal flexibility in water allocation.

FUTURE DIRECTIONS

To best leverage the value of TTO, it should be 
developed within a true real-time modelling context. 
In our opinion, a disproportionate amount of effort is 
devoted to water planning models in California, but 
not enough attention to real-time operational tools to 
support environmental needs. Planning models like 
CalSim 2 and DSM2 (and their cousins) do not and 
cannot capture inflow forecasting uncertainties — the 
behavioral uncertainty of real-world operators — nor 
can they represent the true operational flexibility 
that exists. For example, Mount et al. (2013) were 
concerned that some of the modeled flow operations 
for certain BDCP scenarios would not actually occur 
in real operations. Indeed, the degree to which 
actual operations follow simulated operations can 
vary substantially (especially because most planning 
models have a monthly resolution) (Hyatt et al. 2015).

More fundamentally, real-time modeling tools 
that operators use day to day affect actual on-the-
ground, real-life decisions far more (see Hyatt et 
al. 2015). If real-time operational tools do not exist 
that adequately build in ecological flow guidelines 
and targets derived from related modeling (such as 
indicators like those in the EFT or from other studies), 
much of the advice emerging from planning studies 
and their tools will remain academic. Further, the 
sheer number of objectives, locations, indicators, 
and considerations real-world managers face are 
too complex for “rules of thumb,” which partly 
explains the current situation of highly simplified 
environmental targets. 

For these reasons, we see considerable value 
in creation of a real-time decision engine that 
incorporates inflow forecasting information, 
ecological indicators like those in the EFT, and 
automatically runs TTO on a regular (daily or weekly) 
interval to determine a small package of equally 
optimal water release and export decisions. The 
real-time decision engine would also keep track of 
the recent history of success in achieving different 
ecological objectives, thereby further automating the 
establishment of shifting priorities for focal species 
each year. Using results from the decision engine, 
water operators would then be presented with two 
to five alternative water release and export scenarios 
that are recommended from an environmental 
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perspective, and, using their judgment, weigh the 
value of incorporating this information to modify 
traditional coordinated operations. A functioning, 
ecological water-operations management team 
informed by both (1) the proposed automated 
decision engine (a package of appropriate integrated 
decision support tools structured to take advantage 
of TTO), and (2) a rigorous adaptive management 
program would be a giant step forward in routinely 
doing multiple objective trade-off decision-making. 

CONCLUSION

This study demonstrates that adopting a water-
allocation approach that incorporates shifting 
priorities and optimization of ecological indicators 
across years can lead to overall multi-species benefits 
in the SRD. The approach presented in this paper 
relies on the concept of “turn-taking,” a flexible 
approach that takes advantage of the frequency with 
which different species indicators should experience 
favorable conditions, along with prevailing flow 
conditions to optimize the widest range of ecological 
needs being achieved. As the ecological needs of an 
indicator are met, its priority weight is temporarily 
reduced, and other ecological indicators receive 
higher priority (i.e., the needs of ecological indicators 
take turns being met). Further, if water managers 
have real-time tools that enable them to rapidly 
evaluate many alternative flow regimes, they will 
be able to devise more flexible water-management 
approaches that will enable the needs of multiple 
ecosystem functions and species to be met over 
time. Although a water-management paradigm that 
embraces TTO will not solve every trade-off, if it 
were tried, managers just might find that more values 
and objectives get what they need.
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