A Presentation to The National Research Council

Committee on Sustainable Water and Environmental Management

"Considering Alternatives"

Scott Hamilton, Ph.D.

Fig. 3 - Conceptual model of factors that influence the population dynamics of delta smelt synthesized from conceptual pelagic fish models of the Pelagic Organism Decline Management Team (adapted from Armor et al 2005, Baxter et al 2008).

Approach for Assessing RPAs

- Effective, efficient and commensurate
- Illustrations: examples not recommendations
- Quantification of impacts of the proposed actions
- Measurement & assessment of performance

Fall Flows

Figure 1 Survival Versus Sep-Oct X2: 1969-2007

Entrainment of Adults at Water Projects

Relative Density of Pre-spawning Adult Delta Smelt

t\GIS\PROJECT SDelta\PreSpawning.m>

OMR Reregulation to Reduce Salvage

Relative Distribution of Delta Smelt at Each Life Stage in Years of Moderate Flow

K\GISVPublic_PFC_Data\Delta\UTM 10\DataForGradientMaps\modAggData2-2-ForNRC.mxd

Alternative RPAs for Listed Salmonids

Bradley Cavallo, Cramer Fish Sciences

CALFED Science Panel reviewed the BiOp, and while supportive of jeopardy decision, they concluded:

"We believe that <u>lack of quantitative integrative tools</u> will hinder the development of RPAs because NMFS cannot presently quantify the relative contributions of the different project effects to population status nor can NMFS quantitatively determine the potential benefits of specific remedial actions to population recovery."

Improving Salmonid Population Viability: Spring Run Chinook Salmon

Sacramento *

• Use weirs to minimize interbreeding and competition with fall run Chinook!

stressor (NMFS 2009 Recovery Plan)

• Fall run-introgression: Very high

Stanislaus River

Improving Salmonid Population Viability: Central Valley Steelhead

Alternative RPAs Conclusion

- Yesterday we heard ...
 - we must have "expedient actions" and can't defer to additional studies
 - we have "very little margin for error"
 - that for any scientific uncertainties, we must err on the side of protecting ESA listed fish
- Are the BiOp RPA consistent with these standards?
- Other RPAs to consider
 - Habitat restoration & food web enhancement
 - Restoration of more natural hydrograph
 - Reducing mortality caused by non-native predators
 - Contaminant reduction
 - Reduce other sources of "take"
 - Implement actions to minimize adverse hatchery effects
 - SJ River steelhead smolt trap and ferry through Delta

General Findings

- In the preliminary analyses presented here, the data suggest that regulating flows are not an effective means of achieving population-level benefits for delta smelt.
- A large number of other RPAs are available that are more effective and more efficient.
- While not presented today, similar preliminary analyses have been developed for Chinook salmon and steelhead. The findings there are similar: relatively little benefit from flow regulation when other measures are available that appear more effective and more efficient.