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Abstract 17 
Factors impacting the survival of individuals between two life stages have traditionally been evaluated 18 
using log-linear regression of the ratio of abundance estimates for the two stages. These analyses 19 
require simplifying assumptions that may impact the results of hypothesis tests and subsequent 20 
conclusions about the factors impacting survival. Modern statistical methods can reduce the 21 
dependence of analyses on these simplifying assumptions. State-space models and the related concept 22 
of random effects allow the modeling of both process and observation error. Nonlinear models and 23 
associated estimation techniques allow for flexibility in the system model, including density 24 
dependence, and in error structure. Population dynamics models link information from one stage to the 25 
next and over multiple time periods and automatically accommodate missing observations. We 26 
investigate the impact of observation error, density dependence, population dynamics, and data for 27 
multiple stages on hypothesis testing using data for longfin smelt in the San Francisco Bay-Delta.   28 
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Highlights 29 
Modern statistical methods reduce the dependence on simplifying assumptions 30 

State-space models allow the modeling of both process and observation error 31 

Nonlinear models and associated estimation techniques allow flexibility in the model 32 

Population dynamics models link information from one stage to the next and over time 33 

Illustrated using hypothesis testing for longfin smelt in the San Francisco Bay-Delta 34 

Key words 35 
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1 Introduction 37 
Estimation of survival and the factors influencing survival are vital in the research and management of 38 
natural resources. Survival is a critical component of methods used to determine sustainable yields of 39 
harvested resources (Quinn and Deriso, 1999). Managers need to know the most influential factors 40 
effecting the survival of endangered species to focus limited financial resources on research and 41 
management actions that obtain the most benefit. Anthropogenic effects have to be separated from 42 
natural impacts to determine the relative importance of restricting human activities (e.g. Deriso et al., 43 
2008). 44 

Survival can be estimated using a number of approaches ranging from field studies such as following 45 
individuals using radio tracking and determining their fate (White and Garrott, 1990; Skalski et al., 2010) 46 
to sophisticated statistical state-space population dynamics models that integrate multiple data types 47 
including mark-recapture data (Besbeas et al., 2003; Maunder, 2004; Schaub and Abadi, 2010). 48 
Facilitated by the availability of time series of relative abundance, log-linear modeling of the ratio of 49 
relative abundance in two different life stages is a common approach to estimate relative survival and 50 
evaluate the support for different hypotheses about the factors influencing survival. Log-linear modeling 51 
is used because it is conveniently implemented in traditional software packages as a linear equation. 52 
However, it restricts the analysis to a subset of models that are not necessarily the most appropriate for 53 
the particular application. Log-linear modeling also aggregates process and observation error into a 54 
single term limiting the ability to fully characterize uncertainty. Modern nonlinear modeling software 55 
such as BUGS (Lunn et al., 2009) and AD Model Builder (Fournier et al., 2012) expand the modeling 56 
options outside those covered by “fixed effects” log-linear models allowing flexibility in model and error 57 
structure (Bolker et al., 2013). 58 

Correctly dealing with both observation and process error is important for hypothesis testing and 59 
evaluating data based support for alternative hypotheses (Maunder and Watters, 2003; Deriso et al., 60 
2008). Process error (also known as process noise or process variability) refers to stochasticity in 61 
population dynamics, hence parameters as “random effects”, and observation error refers to inaccuracy 62 
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in observations (de Valpine, 2003). One approach for dealing with both observation and process error is 63 
to ignore one or the other entirely. Polacheck et al. (1993) found that ignoring process error (an 64 
observation error estimator) was superior to ignoring observation error (a process error estimator) 65 
when estimating the parameters of a simple population dynamics model, but they did not evaluate 66 
hypothesis testing. Ignoring process error biases likelihood ratio and Akaike information criterion (AIC; 67 
Akaike, 1973) based tests towards incorrectly accepting covariates (Maunder and Watters, 2003). Other 68 
tests such as analysis of deviance (Skalski, 1996) or randomization tests (Edgington, 1987; Deriso et al., 69 
2008) can be used, but they are less elegant and impractical in some situations. An alternative approach 70 
is to include both process and observation error, but assume the ratio of the variances is known (e.g. 71 
Walters and Ludwig, 1981) or that one of the variances is known (e.g. Maunder and Watters, 2003). 72 
Incorrectly specifying the variance terms can bias hypotheis tests (Deriso et al., 2007). The preferred 73 
approach is to use state-space models (e.g. Schnute, 1994; Newman, 1998; deValpine, 2002; Buckland et 74 
al., 2004, 2007; Maunder and Deriso, 2011) that allow the estimation of the variance for both 75 
observation and process error. It should be noted that state-space models are often described under a 76 
different name such as random effect, hierarchical, or Bayesian models. De Valpine and Hastings (2002) 77 
found that state-space models produced lower bias and often lower variance estimates than least 78 
squares estimators that ignore either process noise or observation error. Traditionally, state-space 79 
models have been used to model demographic variability such as the binomial probability of individuals 80 
surviving given an average survival rate (Dupont, 1983; Besbeas et al., 2002). However, demographic 81 
variability is typically overwhelmed by environmental variability (Buckland et al., 2007), so 82 
environmental variability is often modeled instead of demographic variability or in addition to 83 
demographic variability (e.g. Rivot et al., 2004; Newman and Lindley, 2006). Nonlinear, non-Gaussian 84 
state-space models generally require computationally intensive high dimensional integrals that have no 85 
closed form solution (de Valpine, 2003). The implementation of state-space models in a Bayesian 86 
framework have been facilitated by the development of Markov chain Monte Carlo methods (Punt and 87 
Hilborn, 1997; Newman et al., 2009; Lunn et al., 2009). Markov chain Monte Carlo methods have also 88 
been adapted to implement state-space models in a classical framework (Lele et al., 2007). Alternatively 89 
Laplace approximation (Skaug, 2002; Skaug and Fournier, 2006) or importance sampling (Maunder and 90 
Deriso, 2003) can be used to implement the integration in a classical framework. Modern nonlinear 91 
modeling software such as BUGS (Lunn et al., 2009) and AD Model Builder (Fournier et al., 2012) have 92 
made state-space models practical for many applications (Bolker et al., 2013). 93 

Density dependence is an important factor in the dynamics of many populations (Brook and Bradshaw, 94 
2006) and can occur in multiple life stages (e.g. Ciannelli et al., 2004). It is important to consider density 95 
dependence because it can modify the impact of factors (Rose et al., 2001; Maunder and Deriso, 2011). 96 
Environmental factors and density dependence have been identified in numerous studies either 97 
independently or in combination (e.g. Saether, 1997; Brook and Bradshaw, 2006; Ciannelli et al., 2004; 98 
Deriso et al., 2008; Maunder and Deriso, 2011). Density dependence can easily be integrated into state-99 
space models (e.g. de Valpine and Hastings, 2002; Maunder and Deriso, 2011). 100 

Log-linear models, like generalized linear models (GLMs), analysis of variance (ANOVA), and related 101 
statistical methods, do not incorporate demographic relationships between abundances through time 102 
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(de Valpine, 2003). In contrast, lifecycle models link life-stages and time periods using population 103 
dynamics propagating information and uncertainty (Buckland et al., 2007; Maunder and Deriso, 2011). 104 
This link allows information related to one life-stage to inform processes influencing other life-stages 105 
and is particularly important when data is not available for all life stages for all time periods. Hypotheses 106 
that are difficult to consider with ANOVA and related methods can be simple to express with a 107 
population dynamics model (De Valpine, 2003). De Valpine (2003) found that a population dynamics 108 
model gave much higher statistical power than ANOVA and provided greater biological insight. Even 109 
approximately correct population dynamics models provided higher power than omitting demographic 110 
structure, but as the model structure becomes more incorrect, Type I error, power, or both is degraded 111 
(De Valpine, 2003).  112 

Hypothesis testing is an essential part of statistical analysis and is particularly important when 113 
evaluating factors that are impacting survival. When we refer to hypothesis testing we are more 114 
generally referring to the evaluation of the data based support for alternative configurations of the 115 
model, where each configuration could represent an alternative hypothesis.  Hypothesis testing can 116 
easily become complex in population dynamics models because of the multiple factors operating on 117 
different stages under the presence of density dependence. Deriso et al. (2008) present a framework for 118 
evaluating alternative factors influencing survival and Maunder and Deriso (2011) extended the 119 
framework to include density dependence in survival. The first step is to identify the factors to be 120 
considered, including the life stages that are impacted by each factor and where density dependence 121 
occurs. Next, develop a model to include these factors. Then conduct hypothesis tests to determine 122 
which factors are important. Finally, conduct impact analysis to determine the impact of the factors on 123 
quantities useful for management. 124 

Data from longfin smelt (Spirinchus thaleichthys) in the San Francisco Bay-Delta are used to illustrate the 125 
development and advantages of using state-space population dynamics models over simple log-linear 126 
regressions for modeling survival. The models are implemented in AD Model Builder (Fournier et al., 127 
2012) using the La Place approximation for random effects (Skaug and Fournier, 2006) under a classical 128 
(frequentist) framework. Longfin smelt is of conservation concern because it is exposed to a variety of 129 
anthropogenic factors (e.g. habitat modification, sewage outflow, farm runoff, and water diversions) 130 
and survey data has shown a decline in abundance. Longfin smelt was listed as threatened under the 131 
California Endangered Species Act in 2009 and was proposed but declined for federal listing (MacNally et 132 
al., 2010). Several other species in the San Francisco Estuary have also experienced declines (Bennett, 133 
2005; Sommer et al., 2007; MacNally et al., 2010; Thomson et al., 2010; Maunder and Deriso, 2011), but 134 
the declines have yet to be fully explained. 135 

2 Theory 136 
State-space models (e.g. Newman, 1998; Buckland et al., 2004, 2007) appropriately accommodate both 137 
observation and process error (De Valpine, 2002, 2003), which can be essential for unbiased hypothesis 138 
testing (Maunder and Watters, 2003; Deriso et al., 2008). However, the concept of state-space models is 139 
somewhat complicated. De Valpine (2002, 2003) provides a useful description of state-space models in 140 
the context of population dynamics models, but further description may be beneficial and insightful to 141 
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the reader. Here we illustrate state-space models with a simple population dynamics model where the 142 
abundance in the next time period is simply those that survive from the previous time period: 143 

𝐸[𝑋𝑡+1|𝑋𝑡] = 𝜇𝑠𝑋𝑡          Eq. 1 144 

where Xt is the number of individuals at time t, which are the states; 𝜇𝑠 is the mean survival rate. The 145 
observations of the population are estimates of absolute abundance from line transects and the 146 
sampling variation in these estimates is assumed to be normally distributed: 147 

𝑌𝑡~𝑁(𝑋𝑡 ,𝜎2)           Eq. 2 148 

where Yt is the line transect estimate of absolute abundance at time t and 𝜎2 is the sampling variance. 149 

State-space population dynamics models have three main components: 1) states (X), 2) parameters (𝜽), 150 
and 3) observations (Y). The states represent the population such as the abundance in a life stage at a 151 
given time. The parameters describe the average relationship (transition) between the states (e.g. the 152 
average survival rate), but also include the initial state (e.g. X1) and the variance parameters (e.g. 𝜎). The 153 
observations are measurements of the states, or some function of the states. The states and parameters 154 
are unknown and they, or a function of them, are the quantities of interest. The observations, which are 155 
known, are used to provide information about the states and parameters. Observations are generally 156 
not a census of the population, but a sample of the population and therefore contain sampling error 157 
(e.g. if a line transect or trawl survey is used to estimate the abundance of a population). This sampling 158 
error is the observation error and is generally represented by the likelihood function. In other words, the 159 
observation is known, but there is uncertainty in how the observation relates to the true abundance. 160 
There may also be additional error in making the observations over and above the sampling variability, 161 
but for illustrative purposes we ignore this error. 162 

In traditional maximum likelihood estimation, the parameters of the model are estimated by finding the 163 
parameter values that, conditional on these values, give the highest probability (likelihood) that the 164 
observations came from the model. Since the states (X) are a direct function of the parameters (𝜽), for 165 
known observations and given parameter values, the probability function described in equation 2 can be 166 
evaluated. Equation 2 can be evaluated for all possible parameter values and the parameter values that 167 
maximize equation 2 are those that most likely produced the observations. The likelihood function that 168 
is maximized to estimate the parameters is proportional to the sampling distribution (equation 2). To 169 
better illustrate state-space models, let 170 

𝑓(𝜽,𝒀) = 𝑓(𝑿,𝒀),          Eq. 3 171 

the joint distribution of the data and parameters, since the parameters determine the states, represent 172 
the probability distribution in equation 2 and 173 

𝑓𝜽(𝒀),            Eq. 4 174 

the likelihood function, represents equation 3 evaluated at the parameter values 𝜽. Traditional 175 
maximum likelihood assumes that there is a single true value for each parameter. In a State-space 176 
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population dynamics model, it is assumed that the values of the parameters may change over time. This 177 
is the process error. Before describing state-space models, consider the survival in each time period as a 178 
separate model parameter st: 179 

 180 

𝐸[𝑋𝑡+1|𝑋𝑡] = 𝑠𝑡𝑋𝑡         Eq. 5 181 

          182 

In this case, the likelihood function can be denoted 𝑓𝜽,𝒔(𝒀) and traditional maximum likelihood assumes 183 
that there is a single true value for survival probability in each time period and for the other model 184 
parameters (note that the average survival parameter is replaced with a set of survival parameters, one 185 
for each time period) and the survival parameters are estimated along with the other model parameters 186 
by maximizing the likelihood function. However, there is now one survival parameter for each 187 
observation and each survival will be estimated to exactly match the observation. No other parameters 188 
can be estimated (e.g. the observation error variance) and the process error cannot be separated from 189 
the observation error. 190 

Intuitively, the estimation procedure could be improved by adding information based on the form of the 191 
process error probability distribution (e.g. if the temporal variability in survival is known to be low, a 192 
survival parameter in one time period that is very different from the survival in the other time periods is 193 
unlikely) and can be conceptualized as putting an informative prior, in the Bayesian sense, on the 194 
process error (except that the mean and variance of the prior are unknown) (e.g. 𝑠𝑡 = 𝜇𝑠𝑒𝑥𝑝(𝜀𝑡), where 195 
𝜀𝑡~𝑁(0, 𝑣2)), which parallels the random effects approach in generalized linear mixed models 196 
(GLMMs), or in alternative notation 𝑙𝑛(𝑋𝑡+1)~𝑁(𝑙𝑛(𝜇𝑠𝑋𝑡),𝑣2)). In this 197 
case, 𝑓𝜽,𝒔(𝒀) = 𝑓(𝒀|𝒔,𝜽)𝑓(𝒔|𝜽) = 𝑓(𝒀|𝜺,𝜽)𝑓(𝜺|𝜽), where 𝑓(𝜺|𝜽) is the process error probability 198 
distribution, and the  resulting likelihood is often referred to as a  penalized likelihood.  The penalized 199 
likelihood  combines the sampling probability distribution of the observations with the probability 200 
distribution of the states (recall that the parameters determine the state and similarly the process error 201 
probability distribution also defines the state probability distribution). These methods estimate the 202 
process errors (or states) along with the other model parameters while maximizing the joint probability 203 
distribution of the process error and the observations. However, the MLE of the process error variance is 204 
not statistically consistent (Seber and Wild, 1989) and the likelihood function is degenerative towards 205 
zero variance (Maunder and Deriso, 2003). There is often a negatively biased local maximum that can be 206 
used for inference, but the global maximum is at zero process error variance (Maunder and Deriso, 207 
2003). Typically either the observation error variance or the process error variance has to be fixed or the 208 
ratio between them fixed (Walters and Ludwig, 1981). In the case of evaluating multiple covariates that 209 
explain the processes error, the process error variance will decrease as covariates are added and 210 
therefore the process variance should be reduced appropriately, which can only be practically achieved 211 
if the process variance is estimated. 212 



7 
 

In contrast to penalized maximum likelihood, state-space models, like random effect models, 213 
implemented in a classical (frequentist) framework treat the process error (or states) as random 214 
variables rather than parameters and when the process error is integrated out they produce a marginal 215 
likelihood or “true liklihood” function that is used for inference (e.g. equation 4 becomes ∫𝒇𝜽(𝒀, 𝜺)𝒅𝜺 216 
or equivalently ∫𝒇𝜽(𝒀,𝑿)𝒅𝑿). Intuitively, this can be thought of as summing up the likelihood of the 217 
observations for each possible state weighted by the probability of that state (conditioned on the 218 
parameter values), which is related to model averaging. Each possible survival will give different 219 
population abundance (state). Hence the derivation of “state-space”, which refers to the whole range of 220 
possible trajectories through time of the population states (de Valpine, 2002). Integrating out the 221 
process error takes advantage of properties of random variables (e.g. the marginal distribution), which 222 
has the advantage that it provides a consistent non-degenerative MLE for the process error variance. 223 
Pawitan (2003) appropriately summarizes state-space models/random effects as a convenient way to 224 
deal with lots of parameters. In a Bayesian framework (Punt and Hilborn, 1997), parameters are also 225 
treated as random variables and integrated out (e.g. equation 4 becomes ∫∫𝒇(𝒀,𝜽, 𝜺)𝒅𝜺𝒅𝝋 or 226 
equivalently ∫∫𝒇(𝒀,𝜽,𝑿)𝒅𝑿𝒅𝝋, where 𝝋 are the parameters that are not of interest) and the 227 
probability distribution is used for inference rather than the likelihood function. One advantage of the 228 
state-space modeling approach over penalized maximum likelihood is that the marginal likelihood is 229 
consistent with AIC theory, which can be used for hypothesis testing and model selection.  230 

3 Methods 231 

3.1 Models 232 

3.1.1 Log-linear regression 233 
A common approach to model the survival of the number of individuals in a population from one 234 
life-stage to the next as a function of explanatory variables is a log-linear regression of the numbers 235 
in the second stage as a ratio of those in the first stage. A typical analysis models the reproductive 236 
output from adults (At) to the surviving juveniles in the next year (Jt+1).  237 

ln(𝐽𝑡+1/𝐴𝑡)~𝑁(𝛼 + 𝜷𝑰𝒕,𝜎2)          (Eq. 6) 238 

or equivalently in a different notation (the former notation is commonly used to describe state-space 239 
models and the latter notation commonly used to describe random effect models and can be a more 240 
useful description (de Valpine, 2003)). 241 

ln(𝐽𝑡+1/𝐴𝑡) = 𝛼 + 𝜷𝑰𝒕 + 𝜀𝑡         (Eq. 7) 242 

where 243 

ε𝑡~𝑁(0,𝜎2),            (Eq. 8) 244 

N represents a normal distribution, 𝛼 and 𝜷 are parameters of the linear model, 𝑰𝒕 is a matrix of 245 
covariates, and 𝜎2 is the variance of the error. 246 
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The observations are often only an index of relative abundance related to the absolute abundance by a 247 
constant q, often called catchability in the fisheries literature, such that 248 

ln�𝑞𝐽𝐽𝑡+1/𝑞𝐴𝐴𝑡� = 𝛼 + 𝜷𝑰𝒕 + 𝜀𝑡        (Eq. 9) 249 

and unless 𝑞𝐽 = 𝑞𝐴, 𝛼 no longer relates to survival (it also includes reproductive output in our example), 250 
but a combination of survival and differences in catchability. Never-the-less, this does not influence 251 
hypothesis tests of the covariates as long as the q’s are constant through time or their temporal 252 
variation is random and independent of the covariates. 253 

The parameters can be estimate by maximizing the likelihood based on the assumed error distribution 254 
(equation 8). The likelihood function is typically used to represent observation error. However, 𝜀 in 255 
equation 9 includes both process and observation error and if J and A are known without error then 𝜀 256 
describes the unexplained variation (process error) in the modeled relationship. If J and A are known 257 
with error (multiplicative and log-normal) 258 

 259 

ln ��𝐽𝑡+1𝑒𝑥𝑝�𝜀𝐽,𝑡+1�� / �𝐴𝑡𝑒𝑥𝑝�𝜀𝐴,𝑡��� = 𝛼 + 𝜷𝑰𝒕 + 𝜀𝑡      (Eq. 10) 260 

where  261 

ε𝐴,𝑡~𝑁�0,𝜎𝐴,𝑡
2 � 

ε𝐽,𝑡+1~𝑁�0,𝜎𝐽,𝑡+1
2 � 

Such that 262 

ln(𝐽𝑡+1/𝐴𝑡) = 𝛼 + 𝜷𝑰𝒕 + 𝜀𝑡 − 𝜀𝐽,𝑡+1 + 𝜀𝐴,𝑡       (Eq. 11) 263 

 264 

illustrating that equation 6 combines process error and observation error from both measures of 265 
abundance into a single error term  ε𝑡~𝑁�0,𝜎𝐽,𝑡

2 + 𝜎𝐴,𝑡+1
2 + 𝜎𝜀2� 266 

It should be noted that often an estimate of the sampling precision of each observation is available 267 
(hence the time subscript on the variance terms), which eliminates the need to estimate the observation 268 
error variance, but this is generally not the case for the process error. If the observation error differs 269 
substantially among observations, ignoring the observation error may bias the results. Knowing the 270 
observation error variance facilitates the separation of process and observation error. 271 

3.1.2 Alternative formulation 272 
The log-linear regression is deterministically equivalent and, depending on assumptions, 273 
stochastically equivalent to an exponential growth model. The log-linear model assumes that the 274 
unexplained variation in the log of the abundance ratios is normally distributed while the 275 
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exponential growth model assumes that the unexplained variation in the abundance in the second 276 
stage is log-normally distributed 277 

 278 

𝐽𝑡+1 = �́�𝐴𝑡𝑒𝑥𝑝(𝜷𝑰𝒕 + 𝜀𝑡)         (Eq. 12) 279 

Where �́� = 𝑒𝑥𝑝(𝑎) 280 

 281 

3.1.3 State-space model 282 
The estimates of abundance used in the regression are often known with error and this error should be 283 
taken into consideration when doing the analysis. State-space models can be used to include both 284 
observation (i.e. the uncertainty in the estimates of abundance) and process error (the process variation 285 
not explained by the regression coefficients).  In general, random effects are used to model process 286 
error and are equivalent to integrating across the state-space in a state-space model.  287 

An advantage of non-linear state-space models is the flexibility in representing process and observation 288 
error. Equation 6 assumes log-normal multiplicative error for both the observation and process error 289 
with constant variance. The log-normal assumption as implemented in Equation 6 will provide an 290 
unbiased estimate of a, but the quantity of interest �́� = 𝑒𝑥𝑝(𝑎) will be biased such that the expected 291 
value of 𝐸[�́�] = exp (𝑎 + 0.5𝜎2) (Maunder and Deriso, 2011). Equation 12 could be modified to account 292 
for the bias 293 

 294 

𝐽𝑡+1 = �́�𝐴𝑡𝑒𝑥𝑝(𝜷𝑰𝒕 + 𝜀𝑡 − 0.5𝜎2)        (Eq. 13) 295 

Similarly the likelihood and random effects can be modified to deal with the log-normal bias correction 296 
when implementing observation and process error. This may be particularly important when the 297 
observations have different variances resulting in different bias correction factors for each time period. 298 

Alternative error structures could also be used to implement the process and observation error and they 299 
need not have the same error structure. For example, the process error may be log-normal, while the 300 
observation error might be normal.  301 

3.1.4 Density dependence 302 
Population regulation is controlled by both density independent and density dependent factors. The log-303 
linear regression typically includes covariates representing density independent factors (e.g. the 304 
environment). Density dependence can be included in the log-linear regression by adding additional 305 
terms related to abundance into the regression. The Ricker model (Ricker, 1954)  306 

𝐽𝑡+1 = �́�𝐴𝑡𝑒𝑥𝑝(−𝑏𝐴𝑡 + 𝜷𝑰𝒕 + 𝜀𝑡)        Eq. 14 307 
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is often used because it can be linearized by taking the natural logarithm and implemented using 308 
multiple linear regression. 309 

 310 

𝑙𝑛(𝐽𝑡+1) = 𝑎 + 𝑙𝑛(𝐴𝑡)− 𝑏𝐴𝑡 + 𝜷𝑰𝒕 + 𝜀𝑡       Eq. 15 311 

Where 𝑎 = 𝑙𝑛(�́�) 312 

However, the Beverton-Holt model (Beverton and Holt, 1957) is often more applicable for some 313 
populations, but requires iterative non-linear estimation. 314 

 315 

𝐽𝑡+1 = 𝑎𝐴𝑡
1+𝑏𝐴𝑡

𝑒𝑥𝑝(𝜷𝑰𝒕 + 𝜀𝑡)         Eq. 16 316 

 317 

3.1.5 State-space population dynamics model 318 
The log-linear regression only models survival from one stage to the next. A sequence of separate log-319 
linear regressions can be used to model the survival between each stage, however this does not link 320 
information among stages, which can be useful particularly if there is substantial error in the estimates 321 
of abundance or if there are missing abundance estimates. In the case where adults are a year older 322 
than juveniles and the juveniles are measured the year after spawning: 323 

 324 

𝐽𝑡+1 = 𝑎𝐽𝐴𝑡
1+𝑏𝐽𝐴𝑡

𝑒𝑥𝑝�𝜷𝑱𝑰𝒕 + 𝜀𝐽,𝑡�         Eq. 17 325 

𝐴𝑡+1 = 𝑎𝐴𝐽𝑡
1+𝑏𝐴𝐽𝑡

𝑒𝑥𝑝�𝜷𝑨𝑰𝒕 + 𝜀𝐴,𝑡�         Eq. 18 326 

where the process errors ε𝐴~𝑁�0,𝜎𝜖,𝐴
2 � and ε𝐽~𝑁�0,𝜎𝜖,𝐽

2 � are treated as random effects and the 327 
observation errors 𝑙𝑛(J)~𝑁�𝑙𝑛(𝐽),𝜎𝐽2� and 𝑙𝑛(A)~𝑁(𝑙𝑛(𝐴),𝜎𝐴2) are implemented using likelihoods. 328 

In addition to the parameters of the two Beverton-Holt models, the covariate coefficients, and the 329 
standard deviations of the random effects, the initial condition for the population dynamics model, 330 
which are the abundance in the first time period for adults, J1, and abundance in the first time period for 331 
adults, A1, in this case, have to be estimated as parameters. Figure 1 illustrates the difference between 332 
the exponential model representation of the log-linear regression and the state-space population 333 
dynamics model. 334 

3.2 Hypothesis testing and model selection 335 
There are various methods that can be used for hypothesis testing and evaluating the data based 336 
evidence of support for alternative hypotheses, or, perhaps more accurately, evaluating the measure of 337 
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evidence from data about alternative models (Hilborn and Mangel, 1997; Hobbs and Hilborn, 2006).  The 338 
influence of a covariate can be eliminated from the model by fixing the associated coefficient at zero. 339 
This produces a nested model, and model selection can be conducted using likelihood ratio tests. In the 340 
case of a two sided hypothesis test, two times the difference in the negative log-likelihood is compared 341 
with 3.84 based on Pr{𝜒12 < 3.84} = 0.95. If the test is a one sided hypothesis test with significance 342 
level of 5% then two times the difference in the negative log-likelihood is compared with 2.71 based on 343 
Pr{𝜒12 < 2.71} = 0.90 and the constraint that the sign of the coefficient has to be correct. 344 

The likelihood ratio test is not appropriate for non-nested models. For example, when comparing 345 
between two models that include different covariates or two different density dependence 346 
assumptions. In this case, information theory-based methods such as the Akaike information criterion 347 
(AIC; Akaike, 1973) are appropriate. They are also appropriate for nested models. We use the AIC 348 
adjusted for small sample size (AICc) (Burnham and Anderson, 2002) 349 

𝐴𝐼𝐶𝑐 = −2𝑙𝑛𝐿 + 2𝐾 + 2𝐾(𝐾+1)
𝑛−𝐾−1

         (Eq. 19) 350 

Where L is the likelihood function evaluated at its maximum, K is the number of estimated parameters, 351 
and n is the number of observations. The difference between a given model and the model with the 352 
lowest AICC value, Δ, is used for comparing models. For model comparison, Burnham and Anderson 353 
(1998) recommend: “For any model with Δ ≤ 2 there is no credible evidence that the model should be 354 
ruled out .... For a model with 2 ≤ Δ ≤ 4 there is weak evidence that the model is not the K-L [Kullback-355 
Leibler] best model. If a model has 4 ≤ Δ ≤ 7 there is definite evidence that the model is not the K-L 356 
best model, and if 7 ≤ Δ ≤ 10, there is strong evidence that the model is not the K-L best model. 357 
Finally, if Δ > 10, there is very strong evidence that the model is not the K-L best model.”  358 

3.3 Application 359 
Data from longfin smelt in the San Francisco Bay-Delta are used to show the development and 360 
advantages of using state-space population dynamics models over simple log-linear regressions for 361 
modeling survival. We implement a range of models to determine the difference between the modeling 362 
approaches (Table 1). A conceptual model of the San Francisco Bay longfin smelt population was used as 363 
a basis for identifying potential environmental covariates considered in model development (Hanson, 364 
2013; see also Rosenfield and Baxter, 2007; Baxter et al., 2008; Rosenfield, 2010).  The covariates 365 
reflected various geographic regions of the estuary and seasonal periods based on the life history and 366 
seasonality of each lifestage of longfin smelt.  A total of 36 potential covariates were identified in the 367 
initial selection process.  The covariates included various flow variables (e.g., spring X2 location, winter-368 
spring Delta outflow, winter-spring Napa River flow, spring outflow thresholds of 34,500 cfs and 44,500 369 
cfs, spring Sacramento River inflow in addition to various variations of Sacramento and San Joaquin 370 
River runoff), zooplankton (prey) densities (e.g., mysid, Eurytemora, and Pseudodiaptomus densities 371 
over various seasonal time periods), predators and competitors (e.g., juvenile Chinook salmon densities 372 
in the spring, predators in various regions, and the Asian overbite clam Potamocorbula),  and a variety of 373 
abiotic environmental variables (e.g., Secchi depth as an index of turbidity, water temperature, 374 
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ammonium loading to various regions of the estuary, and the ratio of ammonium loading to Delta 375 
inflow).  Based on the conceptual model the sign (positive or negative) in the relationship between each 376 
covariate and the predicted longfin smelt population response was also assigned to each covariate.  All 377 
of the environmental covariates were then entered into two formulations of the longfin smelt lifecycle 378 
model (a model in which spawners are the adult lifestage (November-March) ages 1 and 2 and an 379 
alternative model in which pre-adults (October-March) ages 0 and 1 and adults (November-March) ages 380 
1 and 2 were equally weighted in the model as spawners) and a series of statistical analyses were 381 
performed to identify those covariates with the greatest contribution to the model development 382 
(Maunder and Deriso, 2013). The covariates that explained the most variation from each category of 383 
covariate (e.g. flow, prey, predators, environmental conditions) were then used in the application below 384 
that illustrates the benefits of state-space models.   385 

AICC was used to conduct forward stepwise covariate selection. The procedure selects the covariate with 386 
the best AICC improvement conditional on the inclusion of all previous selected covariates. The 387 
procedure is stopped when there are no further improvements to AICC .The covariates selected and the 388 
∆𝐴𝐼𝐶𝐶  are used to compare methods. The covariates were normalized (mean subtracted and divided by 389 
the standard deviation) to improve model performance. Several factors were chosen as candidates for 390 
the model selection procedure (Table 2 and 3), these factors were chosen based on initial analysis of the 391 
wider range of factors in supplemental table 1 (Maunder and Deriso, 2013; Hanson et al., 2013). Many 392 
of the factors in the larger set were highly correlated, most of which were eliminated. We kept two flow 393 
variables that were highly correlated to illustrate some of the difficulties in hypothesis testing. The 394 
model is fit to relative abundance indices for each stage (Table 4 and Maunder and Deriso 2013b), as 395 
appropriate. The models are implemented using AD Model builder (Fournier et al., 2012) and the 396 
Laplace approximation in used for random effects (Skaug and Fournier, 2006). The observation error in 397 
equation 10 is implemented by treating the true population abundance as a random effect and using the 398 
sampling distribution as the likelihood for abundance. The true abundance is then used in the 399 
calculation of the regression model and the likelihoods for the observations are combined with the 400 
likelihood for the regression equation. We do not include the lognormal bias correction since α is not of 401 
interest and the temporal variation in the observation error is low. 402 

4 Results 403 
In general, all scenarios support the two flow related covariates when a single covariate is tested (Figure 404 
2) followed closely by the prey species Eurytemora. However, after including a flow covariate, support 405 
for Eurytemora is lost and it is not selected in any of the final models. In all models, ammonia is the 406 
second covariate selected and temperature is the third covariate selected (Table 5). Adding density 407 
dependence (models JRLRR and JRLRBH) results in more support for Sacramento runoff over Napa river 408 
runoff, and over the other covariates in general, when comparing single covariate models. Using 409 
observation error only for juveniles and no process error (model J-L--) creates greater differences in the 410 
likelihood between covariates and gives increased relative support to temperature and ammonia.   411 

The likelihood values from the log-linear model (model J/A--L-) and the exponential model (model J--L-) 412 
are identical as expected (Figure 3). The results from the log-linear model with observation error (model 413 
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J/ARRL-), which implies both observation error and process error, and the exponential model with both 414 
observation error and process error (model JRLR-) are identical despite the likelihood and random 415 
effects representing different error components.  416 

Adding observation error makes little difference in relative likelihoods (Figure 3), but changes the 417 
variables selected (Table 5). Sacramento runoff is selected in the first stage of the stepwise regression in 418 
place of Napa river runoff. This is in part because Napa river runoff and Sacramento River runoff are 419 
highly correlated. The stepwise procedure also selects Napa river runoff as a fourth covariate. However, 420 
if Sacramento River runoff is dropped from the final model (that is the model chosen by the step-wise 421 
procedure that includes both flow variables) the AICc drops by 2.58 units. The alternative model which 422 
only includes Napa river runoff as the flow variable is 5.39 units lower than the model which only 423 
includes Sacramento river run off as the flow variable (Figure 4) providing “definite” evidence of Napa 424 
river runoff over Sacramento river runoff in models that do not include density-dependence; evidence 425 
favors Napa river runoff over Sacramento river runoff in all the different model configurations, but not 426 
as definitive as the ones above (Table 6).  427 

Ignoring process error and including observation error only for the juvenile abundance produces much 428 
greater changes in the likelihood causing all covariates to be selected except for those that are rejected 429 
because the coefficient is the wrong sign.  430 

The Ricker (model JRLRR) and Beverton-Holt (model JRLRBH) forms of density dependence produce 431 
different results with the Beverton-Holt model including Napa outflow as a forth covariate resulting in a 432 
better AICC, but it is only 1.65 units lower than the Ricker model providing “no credible” evidence to 433 
differentiate between the two forms of density dependence. The AICC is 4.19 units less than the 434 
exponential model with observation error providing only “weak” evidence for density dependence. If 435 
the Sacramento outflow is discarded from the Beverton-Holt model, the AICC is only 0.25 units less than 436 
the final model, and is only 1.21 units lower than if Napa runoff is not included and Sacramento runoff is 437 
included (Figure 4). So there is “no credible” evidence supporting one runoff covariate over the other in 438 
the presence of density dependence. This differs from the result without density dependence, which 439 
shows “definite” evidence of Napa river runoff over Sacramento runoff. 440 

Using a population dynamics model by linking both stages using a Beverton-Holt relationship (model 441 
PLLRBH) produces nearly identical support for the covariates compared to the Beverton-Holt model 442 
when evaluating single covariate models. The final selected model adds the additional prey covariate for 443 
survival from Juveniles to adults.  444 

5 Discussion 445 
We have illustrated the progression from traditional log-linear models for estimating the factors 446 
influencing survival to state-space population dynamics life-cycle models. State-space models 447 
accommodate both observation and process error, both of which can be vital to avoid bias in parameter 448 
estimates, confidence intervals, and hypothesis tests (De Valpine and Hastings, 2002; Maunder and 449 
Watters, 2003; Deriso et al., 2007). Our model that ignored process error selected prey as an additional 450 
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covariate, which was not selected by any other model, and would have selected additional covariates if 451 
they had not been discarded because the coefficient was the wrong sign. In our application, ignoring 452 
observation error did not have a large impact on the relative support for the different covariates. 453 
However, it did change what covariates were selected because the two flow covariates were highly 454 
correlated. In other applications, where observation error is larger and particularly if it varies among 455 
data points, the influence of including observation error is likely to be greater. Explicitly modeling 456 
process error and separating it from observation error is also important in estimating the probability of 457 
future events such as extinction (Maunder, 2004) and evaluating the uncertainty in the relationships 458 
between survival and covariates so this uncertainty can be included in management advice (Maunder 459 
and Deriso, 2011). 460 

The observation error standard deviations used in our application, calculated from bootstrap analysis of 461 
the survey data, were assumed known and to represent the random sampling error. They do not include 462 
variation due to other factors such as annual changes in survey catchability. This additional observation 463 
error may influence hypothesis testing. The standard deviation representing additional variation in the 464 
observation process could be estimated analytically (Maunder and Starr, 2003; Deriso et al., 2007) or 465 
covariates added to the observation model, perhaps using finer scale data (e.g. Maunder, 2001; Besbeas 466 
and Freeman, 2006). Estimating the additional observation error variance adds one more parameter, 467 
which will increase the variance of parameter estimates and will probably reduce the statistical 468 
significance of covariates. 469 

The estimated observation error (sampling) variance often assumes the process error. This is essentially 470 
what the log-linear and simple exponential models do. They do not explicitly model the process error, 471 
but by ignoring the observation error variances in the likelihood and estimating the variance of the 472 
likelihood function, which formally represents the observation error, they accommodate the process 473 
error. However, it is important to understand that the variance estimates from these models represent a 474 
combination of process error and observation error, particularly for making predictions since predictions 475 
are desired for true abundance and not observed abundance. In more complex population dynamics 476 
models, like those used in fisheries stock assessment (Maunder and Punt, 2013; Punt et al., 2013, 477 
Methot and Wetzel, 2013), which model many processes, only one type of process error is typically 478 
modeled (e.g. annual recruitment variability) and estimation of the observation error variance for a 479 
variety of data types or the modeled process error may accommodate the unmodeled process error.  480 

Contemporary fisheries stock assessment models (Maunder and Punt, 2013; Punt et al., 2013; Methot 481 
and Wetzel, 2013) are often too complicated to model in a state-space framework, although some 482 
success has been achieved (McAllister an Ianelli, 1997; Maunder and Deriso, 2003), particularly in a 483 
Bayesian context (Punt and Hilborn, 1997). The standard approach is to use penalized likelihood with the 484 
variance of the process error for annual recruitment fixed at a pre-determined value (Maunder and 485 
Deriso, 2003). Misspecified process error variance will bias confidence intervals and hypothesis tests. 486 
Adding covariates to explain process error will reduce the process error variance, and the variance 487 
needs to be adjusted for this. Hopefully, as computers and estimation algorithms get more efficient, 488 
fisheries stock assessment models can be implemented in the state-space framework so the process 489 
error variance can be estimated. In the meantime, it might be prudent to estimate the parameters and 490 
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conduct hypothesis tests under different assumptions about the process error variance to ensure that 491 
results are consistent.  492 

We found that modeling either process error or observation error as random effects or likelihood 493 
functions gave the same results. This was an interesting result and it is not clear if this is a general 494 
phenomenona or if it is a consequence of comparing linear Gaussian models. 495 

Our results corroborate other studies that have found that evaluating factors in isolation can produce 496 
different results than evaluating them in combination (e.g. Deriso et al., 2008; Maunder and Deriso, 497 
2011). Similarly, our results parallel those of Maunder and Deriso (2011) who found that some final 498 
models had a coefficient with confidence intervals that cover zero and removing that covariate 499 
improved the AICc. As with Maunder and Deriso’s (2011) study, the covariate in question (Sacramento 500 
River flow) was highly correlated with another covariate (Napa river flow) included in the model.  501 

Maunder and Deriso (2011) recommend that all possible combinations of covariates and density 502 
dependent factors, which we did not do in our illustration, should be evaluated because some factors 503 
may only be detected in combination with other factors or in the presence of density dependence. 504 
Conducting analyses of all possible combinations can be computationally demanding. To reduce the 505 
computational time, Maunder and Deriso (2011) applied a strategy that evaluates two covariates at a 506 
time and uses AICc summed over all possible one and two covariate combinations to select a covariate 507 
that has general support. In contrast, Anderson et al. (2000) warn against testing all possible 508 
combinations unless using model averaging. Practical advice is to ensure that covariates included in the 509 
model have a prior support and that the framework of Maunder and Deriso (2011) is followed to 510 
identify the life stage and the relationship to density dependence before conducting an all combinations 511 
analysis. Given the availability of distributed computing resources, all combinations analysis should be 512 
practical, but care needs to be taken to ensure that all models have converged on the optimal solution, 513 
since this is may be difficult to do on a large number of model runs. Results should be used to rank 514 
models and provide an idea of the data based evidence for alternative hypotheses rather than strict 515 
acceptance-rejection hypothesis testing (Maunder and Deriso, 2011).  516 

We illustrated how multiple stages, each with their own data sets, can be integrated into a population 517 
dynamics model. This is an elementary form of the contemporary integrated analysis, which attempts to 518 
include all relevant data into a single analysis (Maunder, 2003; Buckland et al., 2007; Schaub and Abadi, 519 
2010; Maunder and Punt, 2013; Methot and Wetzel, 2013). The potential for integrated analysis is 520 
limitless with different data types, sampling distributions, and processes being modeled. For example, 521 
information on survival from mark-recapture data could be included in the population dynamics models 522 
either by directly integrating the mark-recapture data into the model (Maunder, 2004) or by 523 
approximating the likelihood (Besbeas et al., 2002). Integrated analysis facilitates the propagation of 524 
information and uncertainty, particularly when states are linked from one time period to the next in a 525 
population dynamics model. For example, one life stage in the analysis of Maunder and Deriso (2011) 526 
did not have an abundance index until partway through the modeling time frame and the processes 527 
related to this stage were informed by the indices of abundance for other stages. However, the years 528 
that the index was available were enough to help determine which stages the covariates influenced. 529 
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Similarly, Tenan et al. (2012) showed how integrating different types of data allowed for the estimation 530 
of population processes not directly measured in the field. We found that adding data and a covariate 531 
for survival from juveniles to adults did not influence the support for the covariates of survival from 532 
Adults to Juveniles. This is somewhat reassuring since the application had good data for all time periods 533 
and therefore it would not be desirable for the results of one stage to influence those of another. If 534 
process error was not modeled, the added data may have inadvertently influenced the covariate 535 
selection. If the data was poor or missing for some time periods, then it would be reasonable and 536 
desirable for data for one stage to influence the other stages. 537 

The models we used to illustrate state-space models were simple compared to those used in many real 538 
applications (e.g. fisheries stock assessment; see Maunder and Punt, 2013; Methot and Wetzel, 2013; 539 
Punt et al., 2013). Alternative functions could be used to model the transition among stages. For 540 
example, Maunder and Deriso (2011) used the three-parameter Deriso-Schnute stock-recruitment 541 
model (Deriso, 1980; Schnute, 1985). The Deriso-Schnute stock-recruitment model has a third 542 
parameter than can be set to represent either the Beverton-Holt or Ricker stock-recruitment models. 543 
Maunder and Deriso (2011) also allow the flexibility to implement covariates before or after density 544 
dependence. Covariates could influence the strength or form of the density dependence (Walters, 1987; 545 
Ciannelli et al., 2004). The covariates were included as simple log linear terms and there may be more 546 
appropriate relationships between survival and covariates. For example there may be a dome shape 547 
relationship between survival and temperature with lower survival at lower and higher temperature or 548 
temperature may interact with prey availability.  549 

It is important to evaluate the impact of covariates so that management advice can be provided. 550 
Extending the approach of Wang et al. (2009), Deriso et al. (2008) and Maunder and Deriso (2011) 551 
carried out impact analysis retrospectively by simultaneously running a model that shared parameters 552 
and fixed covariates at null values to ensure that uncertainty was maintained. This method calculates 553 
the impact on quantities of interest and the effect size, which is much more informative than simply 554 
determining what covariates are statistically significant. The separation of process error from 555 
observation error using state-space models allows better characterization of uncertainty in future 556 
projections. Although, trends in population processes, perhaps related to covariates, can be more 557 
important for predicting extinction (Maunder, 2004) and it may be difficult to model the covariates into 558 
the future. 559 

We found that multiple factors and density dependence influenced the survival of longfin smelt. The 560 
AICc was over four units higher for the Beverton-Holt model compared to the exponential model 561 
suggesting there is “definite” evidence for density dependence. The level of evidence is less if the 562 
models with Napa river flow are used. Maunder and Deriso (2011) also found multiple factors and 563 
density dependence influenced the survival of delta smelt. Similarly, Deriso et al. (2008) found support 564 
for multiple factors and density dependence influencing Prince William Sound herring (Clupea pallasii). 565 
As in this study, Maunder and Deriso (2011) found that many of the covariates selected were robust to 566 
the form of the density dependence, although, density dependence reduced the ability of the model to 567 
differentiate between Napa River flow and Sacramento River flow. In the absence of density 568 
dependence there was “definite” evidence of Napa river runoff over Sacramento runoff but when 569 
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density dependence was added there was “no credible” evidence supporting one runoff covariate over 570 
the other. 571 

We found that flow, ammonia, and temperature were consistently supported by the data for longfin 572 
smelt. Thomson et al. (2010) found that X2 (a measure of the spatial extent of salinity: position of the 573 
2% isohaline), which is related to flow, and water clarity explained longfin abundance. MacNally et al. 574 
(2010) also found that X2 explained longfin abundance, but in addition found a correlation with prey 575 
species. Among candidate flow variables, we did not find either X2, OMR flow, or the two outflow 576 
threshold variables in supplemental Table 1 to be important covariates in our initial screening after the 577 
inclusion of flow variables that had higher support in the data (Maunder and Deriso, 2013) and 578 
therefore they were not included in the covariate lists in Table 2. Maunder and Deriso (2011) did not 579 
find that flow variables explained the survival of delta smelt, which inhabits the same system as longfin 580 
smelt. They found that temperature, prey, and predators dominated the covariates that were supported 581 
by data. Several other pelagic species in the San Francisco Estuary have also experienced declines, but 582 
the cause is still uncertain (Bennett, 2005; Sommer et al., 2007; Mac Nally et al., 2010; Thomson et al., 583 
2010; Maunder and Deriso, 2011). 584 

The theory for state-space life cycle population dynamics models is well developed (Newman, 1998; de 585 
Valpine, 2002; Maunder, 2004) and software to implement them is available (Lunn et al., 2009; Fournier 586 
et al., 2012; Bolker et al., 2013). State-space models have been shown to be superior to other methods 587 
(de Valpine and Hastings, 2002; de Valpine, 2003) and applied in a variety of situations (e.g. Millar and 588 
Meyer, 2000; Buckland et al., 2004; McAllister and Ianelli, 1997; Maunder and Deriso, 2011). Therefore, 589 
we recommend that they are an essential tool for evaluating factors impacting species of concern and 590 
encourage further research to facilitate their use. 591 
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Table 1. Description of modeling scenarios. RE = random effect. The name is based on the entries in the 747 
other columns. 748 

Name Dependent 
variable 

Adult 
observation 
error 

Juvenile 
observationerror 

Process 
error 

Density 
dependence 

Equation 

J/A--L- J/A None None Likelihood None 7 
J--L- J None None Likelihood None 12 
J/ARRL- J/A RE RE Likelihood None 7 
J-L-- J None Likelihood None None 12 
J-LR- J None Likelihood RE None 12 
JRLR- J RE Likelihood RE None 12 
JRLRR J RE Likelihood RE Ricker 14 
JRLRBH J RE Likelihood RE B-H 16 
PLLRBH J and A Likelihood Likelihood RE for both 

A and J 
B-H 17 and 18 

 749 

Table 2. Covariates 750 

 751 

Factor Time Stage sign of coefficient 
Mysid May to June Adult to Juveniles positive 
Secchi depth April to June Adult to Juveniles negative 
Eurytemera April to May Adult to Juveniles positive 
Napa River flow  Jan-Mar Adult to Juveniles positive 
Predators central +San Pablo  Annual Adult to Juveniles negative 
Average temperature April to June Adult to Juveniles negative 
San Pablo ammonium April to June Adult to Juveniles negative 
Sacramento River runoff prev Oct to July Adult to Juveniles positive 
Overbite clam presence year round Adult to Juveniles negative 
Mysid July to September Juveniles to pre-adult positive 

 752 
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Table 3. Normalized covariates used in the models 

           

Year Mysid 
Secchi 
depth Eurytemera 

Napa River 
 flow 

Predators  
central + 
San Pablo 

Average 
temperature 

San Pablo  
ammonium 

Sacramento 
River runoff 

Overbite 
clam 
presence Mysid2  

1980 0.853718 1.132715 1.080842 -0.53318 -1.00832 1.000508 -0.49261 -0.81876 -1.82153 0.19676 
1981 0.008556 -0.38085 1.563369 0.942767 -0.73836 -1.07541 -1.07396 1.717238 -1.82153 0.066562 
1982 -0.57054 -0.47351 1.13467 1.605906 -0.81277 -0.70393 1.154556 2.202613 -1.82153 4.98957 
1983 1.294227 0.876522 0.081392 -0.13147 -0.75301 -0.5933 -1.17085 0.460037 -1.82153 0.274976 
1984 2.456133 2.069006 -0.55701 -0.59147 -0.76796 -0.35928 0.185635 -0.82558 -1.82153 -0.02174 
1985 3.304004 -0.91878 1.685837 0.907025 -0.47223 0.672727 -0.27897 0.855612 -1.82153 -0.01752 
1986 0.818859 1.863066 -0.53119 -1.25034 -0.7215 1.877846 -1.26775 -1.02678 0.53128 1.529492 
1987 -0.22898 -1.13284 -0.69825 -0.76187 -0.83145 -0.14351 1.057664 -1.03133 0.53128 -0.38099 
1988 -0.39433 -1.65546 -0.60016 -1.1355 -0.31977 0.618684 0.214993 -0.39591 0.53128 -0.49302 
1989 -0.51841 -0.93892 -0.69613 -1.118 -0.75124 1.215098 1.352603 -1.02792 0.53128 -0.42254 
1990 -0.58082 -1.44758 -0.5917 -2.28245 -0.10439 -1.39273 0.240282 -1.12113 0.53128 -0.46772 
1991 -0.53252 1.137815 -0.68111 -0.92498 -0.46803 2.259919 -0.84297 -1.07225 0.53128 -0.40537 
1992 -0.48866 0.330416 -0.07055 1.075703 -0.21676 0.012591 -1.11001 0.444124 0.53128 -0.49349 
1993 -0.69768 -0.5702 -0.70014 -1.16338 -0.39592 -0.60919 1.248929 -1.19274 0.53128 -0.41223 
1994 -0.73336 1.35507 2.518919 1.348697 -0.52902 -0.7761 -1.11059 1.846823 0.53128 -0.15803 
1995 -0.68224 -0.07661 -0.7433 0.658241 -0.42458 0.682527 0.869306 0.453217 0.53128 -0.391 
1996 -0.28661 -0.5692 -0.719 0.509216 -0.14333 0.855629 3.141715 0.809007 0.53128 -0.34611 
1997 0.23437 -0.62056 0.617156 1.339571 -0.69596 -1.44204 -0.56712 1.48876 0.53128 -0.25294 
1998 -0.60568 -0.67723 0.041468 0.409611 0.004222 -1.22387 -0.4494 0.328179 0.53128 -0.35382 
1999 0.488225 1.119202 0.313572 0.039809 0.330112 0.014348 0.246096 0.067873 0.53128 -0.22533 
2000 -0.41639 1.365879 -0.7372 -0.60789 1.841149 0.795584 -0.59938 -0.9654 0.53128 -0.11864 
2001 -0.4009 0.208726 -0.73971 0.198123 2.578221 0.086682 0.454607 -0.42091 0.53128 -0.3559 
2002 -0.57373 0.301604 -0.7808 0.474233 1.235607 1.471128 -0.33894 0.114478 0.53128 -0.09974 
2003 -0.27168 -0.10606 -0.81838 0.533286 0.43951 0.276905 1.033635 -0.25723 0.53128 -0.38441 
2004 -0.70805 -0.11766 -0.77685 0.808158 -0.71743 0.072677 -0.6497 0.028088 0.53128 -0.16125 
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2005 -0.50008 0.386148 1.257426 1.246163 -0.29197 0.327947 -0.77243 1.567193 0.53128 -0.15728 
2006 -0.76575 -1.13876 -0.7933 -1.05727 0.62834 -0.16466 0.719187 -0.91197 0.53128 -0.34049 
2007 0.147108 -0.91678 -0.57735 -0.00905 1.433459 -1.91036 0.346218 -0.91197 0.53128 -0.30393 
2008 -0.74928 -1.09509 -0.73349 -1.52307 0.770768 -0.83802 -0.42892 -0.60051 0.53128 0.053042 
2009 -0.63695 -0.00317 -4.72E-17 0.13014 2.654387 -0.09821 0.142357 -0.26064 0.53128 -0.42238 
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Table 4. Relative abundance indices and their standard deviations. 

 
Juveniles 

 
Adults 

 Year Index sd Index sd 
1980 5.147645 1.540905 0.671315 0.147691 
1981 0.054695 0.011506 2.028516 0.500702 
1982 6.811693 1.338478 1.789226 0.375208 
1983 0.762013 0.223661 4.703123 0.83494 
1984 0.903832 0.288505 1.00861 0.214744 
1985 0.112521 0.031633 1.54415 0.293123 
1986 0.306562 0.027569 0.850549 0.107033 
1987 0.056342 0.013876 3.128023 0.350311 
1988 0.039315 0.010529 0.999951 0.130288 
1989 0.032967 0.006855 0.522527 0.122224 
1990 0.015897 0.004812 0.246579 0.062757 
1991 0.00576 0.001925 0.147667 0.082057 
1992 0.025127 0.00702 0.051506 0.023044 
1993 0.138967 0.03988 0.377306 0.089155 
1994 0.043509 0.011538 0.75603 0.2145 
1995 10.73554 2.403421 0.158759 0.045147 
1996 0.029749 0.007081 3.440189 0.42718 
1997 0.073301 0.013608 0.567071 0.101007 
1998 1.387879 0.420226 0.61144 0.098984 
1999 2.561377 0.471928 0.917655 0.122052 
2000 0.344826 0.072434 1.297423 0.180564 
2001 0.033508 0.009184 1.427239 0.203511 
2002 0.114351 0.027719 0.695358 0.177047 
2003 0.095383 0.0378 0.719237 0.120373 
2004 0.054189 0.012327 0.586214 0.096707 
2005 0.1773 0.048076 0.498012 0.111741 
2006 0.270357 0.083662 0.457178 0.102388 
2007 0.074141 0.026098 0.185869 0.042095 
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2008 0.06446 0.014879 0.479959 0.108918 
2009 0.023163 0.00668 0.292118 0.082641 
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Table 5. Order of covariates chosen by the forward step-wise procedure. 

 

Covars 
J/A--
L- J/ARRL- J--L- J-L-- J-LR- JRLR- JRLRR JRLRBH 

 
PLLRBH 

Mysid 
        

 
Secchi depth 

        
 

Eurytemera 
        

 
Napa River flow  1 4 1 4 1 4 

 
4 5 

Predators central 
+San Pablo  

   
5 

    

 

Average 
temperature 3 3 3 3 3 3 3 3 

3 

San Pablo ammonium 
2 2 2 2 2 2 2 2 

 
2 

Sacramento River 
runoff 

 
1 

 
1 

 
1 1 1 

 
1 

Overbite clam 
presence 

        

 

Mysid July-Sept         4 
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Table 6. AICC values for the steps in the forward stepwise selection procedure (see Table 5 for selection order) and for models with no covariates 
and with different combinations of flow variables (temperature and ammonia included). AICc scores cannot be compared among some models 
because the data used to fit the model is different. Models with observation error in both abundances time series fit to both abundance time 
series are comparable (models J/ARRL-, JRLR-, JRLRR,  and JRLRBH) but cannot be compared to models that fit to only the juvenile abundance 
time series (models J/A--L-, J--L-, and J-L--). The two stage model includes two random effects (PLLRBH) and due to the method used to model 
random effects cannot be compared to the other models. 

Covariates J/A--L- J/ARRL- J--L- J-L-- J-LR- JRLR- JRLRR JRLRBH 
 
PLLRBH 

Mysid May-June 
         Secchi depth 
         Eurytemera 
         Napa River flow  105.14 -19.46 105.14 359.95 50.32 -19.46 

 
-23.64 41.33 

Predators central +San Pablo  
   

351.12 
     Average temperature 88.53 -16.65 88.53 405.73 33.44 -16.65 -21.99 -22.68 44.52 

San Pablo ammonium 95.23 -13.10 95.23 650.94 40.28 -13.10 -17.39 -18.98 47.62 
Sacramento River runoff 

 
-4.72 

 
1006.95 

 
-4.72 -10.84 -12.17 55.11 

Overbite clam presence 
         Mysid July-Sept 
        

42.16 
 

         No covariates 121.29 11.11 121.29 1573.34 66.27 11.11 12.49 12.45 79.35 
Napa River runoff 88.53 -22.04 88.53 365.05 33.44 -22.04 -23.59 -23.89 43.76 
Sacramento River runoff 94.07 -16.65 94.07 405.73 38.89 -16.65 -21.99 -22.68 44.52 
Both flow variables 91.23 -19.46 91.23 359.95 36.10 -19.46 -23.01 -23.64 43.55 
Best forward stepwise 88.53 -19.46 88.53 351.12 33.44 -19.46 -21.99 -23.64 41.33 
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Figure captions 
Figure 1. Conceptual diagram illustrating the differences between a) the exponential model representation of the log-linear regression and b) the 
full state-space population dynamics model. The shaded (red) solid arrows represent forcing functions and the dashed arrows represent 
predictions of the observations used in the likelihood functions. 

 

Figure 2. Difference in negative log-likelihood from the model with no covariates to the model with the covariate with lowest negative log-
likelihood for each scenario. Model J-L-- is on the second Y axis. The covariates are presented in the same order as they are defined in Table 2. 

 

Figure 3. Difference in AICc from the selected model compared to the model without covariates for each scenario. The value for model J-L-- is 
truncated.  

 

Figure 4. Difference in AICC between the models with different flow variables. The blue histogram includes only SacNapa River runoff and the 
models with Sacramento River Runoff and between the models with Napa River runoff and both Sacramento River Runoff and Napa River runoff. 
The Sacramento River Runoff value for model J-L-- is truncated. 
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Figure 1. Conceptual diagram illustrating the differences between a) the exponential model representation of the log-linear regression and b) the 
full state-space population dynamics model. The shaded (red) solid arrows represent forcing functions and the dashed arrows represent 
predictions of the observations used in the likelihood functions. 
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Figure 2. Difference in negative log-likelihood from the model with no covariates to the model with the covariate with lowest negative log-
likelihood for each scenario. Model J-L-- is on the second Y axis. The covariates are presented in the same order as they are defined in Table 2. 
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Figure 3. Difference in AICc from the selected model compared to the model without covariates for each scenario. The value for model J-L-- is 
truncated.  
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Figure 4. Difference in AICC between the models with different flow variables. The blue histogram includes only Sacramento River runoff and the 
red histogram includes both Napa River and Sacramento River runoff. The DeltaAICc values are the AICc values for these models minus the AICc 
values for the model with only Napa River runoff. The Sacramento River Runoff value for model J-L-- is truncated. 
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Supplemental Table 1.  Covariates evaluated for inclusion in the life cycle model for longfin smelt in Maunder and Deriso 2013. 
 

Factor Time Stage sign of coefficient 
Mysid July to September Juveniles to pre-adult positive 
Mysid May to June Adult to Juveniles positive 
OMR January to March Adult to Juveniles positive 
X2 April to June Adult to Juveniles negative 
Secchi April to June Adult to Juveniles negative 
Secchi August to September Juveniles to pre-adult negative 
Outflow January to March Adult to Juveniles positive 
Eury April to May Adult to Juveniles positive 
Napa R  Jan-Mar Adult to Juveniles positive 
outflow threshold indicator at 34500 cfs Mar-May Adult to Juveniles positive 
outflow threshold indicator at 44500 cfs Mar-May Adult to Juveniles positive 
chinook salmon Chipps Island trawl  Apr-May Adult to Juveniles negative 
predators central +San pablo  Annual all stages negative 
predators suisun Bay  Jan-Mar Adult to Juveniles negative 
predators suisun  Mar-Jul Adult to Juveniles negative 
avg MWT temperature January to March Adult to Juveniles negative 
avg MWT temperature April to June Adult to Juveniles negative 
avg MWT temperature July Adult to Juveniles negative 
area weighted ammonium April to June Adult to Juveniles negative 
Central Bay ammonium April to June Adult to Juveniles negative 
San Pablo ammonium April to June Adult to Juveniles negative 
Suisun Bay ammonium April to June Adult to Juveniles negative 
Pseudodiaptomus  April to July Adult to Juveniles  positive 
Water Temperature where smelt occur spring Adult to Juveniles negative 

Secchi Depth where smelt occur spring Adult to Juveniles negative 
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predators  where smelt occur total 12 months year round all stages negative 

Metric Tons of Ammonium discharged Sacramento April to June Adult to Juveniles negative 
Sacramento River Inflow April to June Adult to Juveniles positive 
Ammonium/inflow April to June Adult to Juveniles negative 

Sacramento River Runoff prev Oct to March Adult to Juveniles positive 

Sacramento Runoff April to June Adult to Juveniles positive 

Sacramento Runoff prev Oct to July Adult to Juveniles positive 

Sacramento + San Joaquin Runoff prev Oct to March Adult to Juveniles positive 

Sacramento + San Joaquin Runoff April to July Adult to Juveniles positive 

Sacramento + San Joaquin Runoff year round all stages positive 
overbite clam presence year round all stages negative 
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