
This article was downloaded by: [amye osti]
On: 09 January 2012, At: 13:40
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Digital Earth
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tjde20

The challenges of developing an open
source, standards-based technology
stack to deliver the latest UK climate
projections
Ag Stephens a , Philip James b , David Alderson b , Stephen Pascoe
a , Simon Abele b , Alan Iwi a & Peter Chiu a
a The British Atmospheric Data Centre, Didcot, UK
b School of Civil Engineering and Geosciences, Newcastle
University, Newcastle-Upon-Tyne, UK

Available online: 24 May 2011

To cite this article: Ag Stephens, Philip James, David Alderson, Stephen Pascoe, Simon Abele, Alan
Iwi & Peter Chiu (2012): The challenges of developing an open source, standards-based technology
stack to deliver the latest UK climate projections, International Journal of Digital Earth, 5:1, 43-62

To link to this article: http://dx.doi.org/10.1080/17538947.2011.571724

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tjde20
http://dx.doi.org/10.1080/17538947.2011.571724
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

The challenges of developing an open source, standards-based technology
stack to deliver the latest UK climate projections

Ag Stephensa, Philip Jamesb, David Aldersonb*, Stephen Pascoea, Simon Abeleb,

Alan Iwia and Peter Chiua

aThe British Atmospheric Data Centre, Didcot, UK; bSchool of Civil Engineering and
Geosciences, Newcastle University, Newcastle-Upon-Tyne, UK

(Received 20 December 2010; final version received 10 March 2011)

To improve the understanding of local and regional effects of climate change, the
UK government supported the development of new climate projections. The Met
Office Hadley Centre produced a sophisticated set of probabilistic projections
for future climate. This paper discusses the design and implementation of an
interactive website to deliver those projections to a broad user community. The
interface presents complex data sets, generates on-the-fly products and schedules
jobs to an offline weather generator capable of outputting gigabytes of data in
response to a single request. A robust and scalable physical architecture was
delivered through significant use of open source technologies and open standards.

Keywords: geoinformatics; digital earth; climate change; geospatial science;
geospatial data integration

1. Introduction

The issue of climate change is of great importance to decision-makers, businesses and

the general public. In 2009, the UK launched a new set of climate projections. This

paper discusses how the data management, geospatial services and web-interface

were delivered in order to provide these projections to a wide and diverse audience.

This section introduces the context and the projections themselves. Section 2 expl-

ains the design and implementation undertaken to deliver the projections to users.

Section 3 discusses the various merits of the system design, technologies and standards

employed within the project, and Section 4 draws conclusions from this work.

There is now clear evidence that global warming is happening and that

anthropogenic emissions are a major contributor (Solomon et al. 2007). The resultant

effects of the emissions problem are likely to be experienced by all, whether

proportionately or disproportionately. The climate science community is being called

upon to provide high-resolution projections of climate change that can be used by

decision-makers to plan future strategy at all levels. This is important to both public

and private sectors, and is particularly vital for government. In the UK, national and

local government need the best projections of regional and local climate to feed into

the UK Climate Change Risk Assessment (2010), cross-departmental and local

strategies. The use of climate projections can aid understanding of the likely impacts

*Corresponding author. Email: David.Alderson@ncl.ac.uk

International Journal of Digital Earth,

Vol. 5, No. 1, January 2012, 43�62

ISSN 1753-8947 print/ISSN 1753-8955 online

2012 Taylor & Francis

http://dx.doi.org/10.1080/17538947.2011.571724

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

http://dx.doi.org/10.1080/17538947.2011.571724
http://www.tandfonline.com

of climate change on the economy and the environment, specifically in this

case within the UK. There is also a growing requirement to place such data,

and the data-production process, in the public domain. This is reflected in the

Freedom of Information Act (2000) and the recent UK government enquiry into

climate science.

The UK Climate Impacts Programme (UKCIP) manages the delivery of UK

climate projections for the Department for Environment, Food and Rural Affairs

(DEFRA), with the science being provided by the Met Office Hadley Centre

(MOHC). Previous projections (UKCIP98 and UKCIP02) typically provided a

small number of feasible future climate scenarios based on the MOHC regional

climate models. Following a significant consultation process, the latest product

represents a major departure from previous methods with the introduction of

probabilistic projections. The UK Climate Projections (UKCP09, launched in June

2009 [Murphy et al. 2009]) provide both land and marine data sets for a range of

key meteorological variables over a variety of temporal and spatial scales. Detailed

information on the underlying scientific theory that underpins the UK climate

projections can be found within the UK Climate Projections Science Report

(Murphy et al. 2009). The following description provides an overview of this

theory to provide context for the remainder of the paper. The main product is a

25-km gridded data set available for three emission scenarios for seven 30-year

periods up to the 2080s. Further complexity lies in the probabilistic nature of the

data set because each grid square, 30-year period, month (or season), variable and

emissions scenario is provided as a set of plausible projections. Using Bayesian’

statistical theory, the process, based around the MOHC HadCM3/RM3 suite of

models (Gordon et al. 2000) and an ensemble of global climate simulations, and

historical observations, derives a probabilistic range of possible outcomes, typically

expressed as a probability density function. The complexity means there are

potentially billions of unique data products available to the user. UKCP09 also

includes daily and hourly time-series of future weather simulated for a given

location and climate scenario. The UKCP09 Weather Generator (Jones et al. 2009)

was developed at Newcastle University (NCL) and the University of East Anglia

(UEA) to provide these simulations which are perturbed by the future climate

projections from the MOHC. An effective way to make all this available to a wide

audience is via a web-interface, incorporating download tools to facilitate research

use of the data.

2. Design and implementation

2.1 Requirements gathering

Fixing the requirements at the start of any project is essential. In the case of the

UKCP09 projections, there were many challenges in gathering requirements. Not

only were many of the products new but the user community was diverse and varied

greatly in its knowledge of the domain. The requirements were defined after reviews

of existing services and detailed discussions with the data providers, key

stakeholders and representative users. The main drivers for the requirements

included provision of complex data, on-the-fly image generation, web access, high

44 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

usage and offline processing. The key system-wide requirements can be summarised

as follows:

(1) Web-accessible services: A web front-end that calls other web services

returning visualisations and data products.
(2) Scalability: The system must be able to grow with demand.

(3) Offline processing: A back-end capable of managing job queues.

(4) Robustness: The system must withstand high loads and should be stable

over all timescales.

(5) Security and user access: The system must be secure against malicious

attacks and must manage user access.

(6) High availability: Downtime of the system must be minimised.

A further set of requirements was focussed more specifically on the web-interface:

(7) Easy access to help and guidance throughout the system.

(8) The ability to produce customised (and publication-quality) outputs.

(9) The ability to save a request and return to it later.

(10) Presentation of information and data for non-expert users (Goodess et al.

2007, Hewitt et al. 2009).

The requirements specific to the user interface were defined following a review of

existing websites, including the previous UKCIP02 project. Identifying useful

features from existing systems, as well as pitfalls to avoid, gave a better understanding

of the overall requirements. These requirements are revisited in Section 3 where the

merits of the final solution are discussed.

2.2 System architecture

In order to create a system that was both scalable and robust, a software stack was

developed that could be parallelised across multiple nodes. The approach taken

replicated the hardware on high specification servers (8 Intel Xeon CPUs, 32GB

Memory, 64-bit), deploying a set of identical virtual machines (VMs) on each

physical server. A Xen VM image replication system was developed to allow rapid

deployment and removal of each system component as required. This parallelisation

is depicted in the horizontal view of the system in Figure 1. The vertical layering of

the stack demonstrates the various types of VMs deployed.
The three VMs per physical machine were split based on their functional

components as follows:

� User interface (UI) layer

� Service-oriented architecture (SOA) layer

� Offline processing layer

Figure 1 shows how the layered architecture is distributed across the three physical

servers. The management of state is separated out into its own layer and is handled

by physical servers 4 and 5. Details of each layer are outlined in the following

sections.

International Journal of Digital Earth 45

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

2.3 User interface layer

The UI layer provides the web-interface that the user interacts with. The prototy-

ping phase of the UI concentrated upon defining its layout, the process users

would undertake to access the underlying data products, and considered available

technologies upon which to build the interface. The UI was primarily built using

PHP and JavaScript with database connections (PostgreSQL and PostGIS) to

provide the presentation content for the web pages and geospatial services. The

UI layer would expect to receive the highest frequency of HTTP requests. This

section describes the UI design process and some of the key components employed

in the final system.

The project required that the UI would function in Internet Explorer 6, Internet

Explorer 7, Firefox 2� and Mac Safari. In line with common practice, third-party

JavaScript libraries were the preferred means of achieving cross-browser compatibi-

lity (Serrano and Aroztegi 2007). The Dojo and Yahoo YUI components provided

the developers with a starting point for experimenting with JavaScript utility libra-

ries. However, because of the relative infancy of these frameworks during the

prototype development phase, they were subsequently replaced by the JQuery

libraries. JQuery provided a framework that eased the handling of Asynchronous

JavaScript and XML (AJAX) calls, and HTML document object model (DOM)

interactions, and facilitated cross-browser compatibility. The extensive community

Figure 1. The UKCP09 system architecture showing the vertical (functional) layering and the

horizontal (parallelised) layering.

46 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

support and documentation gave the developers confidence in the longevity of the

JQuery library, whilst its plug-in architecture provided access to custom add-ons

developed by the community.

A prototype of the UI was developed and reviewed by prospective users in

order to gain early feedback on the planned developments. The prototype attempted

to encode the entire request selection logic within a single web page, as this was

considered desirable following the review of other similar climate data delivery

systems, such as FINESSI, a web-based tool for exploring climate change impacts

in Finland. This approach was slow due to over-complex client-side scripting as it

attempted to consider all the possible interactions between multiple parameters.

Furthermore, the delivery of all available parameters within a single web page

resulted in a cluttered interface, making it more difficult for users to understand

the complex interactions between parameters. Providing fewer selections per page

and more guidance simplified and improved the user experience and a new model

was created, allowing the user to build a request over a series of pages. The resultant

‘request builder’ approach, frequently employed within internet commerce

sites, allowed a request to be built from three pre-defined starting points by

initially selecting a data set, variable or location (see Figure 2). This restricted the

number of pathways through the interface and reduced the amount of client-side

Figure 2. Schematic of the request builder process. # UK Climate Projections 2009.

International Journal of Digital Earth 47

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

scripting required to represent the relationships between parameters. The parameters

themselves were stored in PHP classes with unique identifiers and delivered via a

PHP module. This determined the next page within a pathway based on the previous

selections and the starting point of the request. This model allowed most of the

request and rule handling to be managed on the server rather than in the client

(browser) code. The modified approach improved the speed and reliability of the

UI, whilst also allowing the partial parameter selections to be saved during the

process, giving users the opportunity to resume partially completed requests at a

later date. Since many of the products served by the SOA layer were deterministic, it
was vital that any two identical requests produced the same output for comparative

purposes (Granell et al. 2010). The request builder provides a unique identifier, and

re-submission URL, for each request, allowing it to be shared amongst users and

referenced in reports. The UKCP09 User Interface Manual (2009) provides users

with guidance on the technical process of creating a request and navigating through

the interface, in order to gain access to a range of outputs.

The request builder process (as depicted in Figure 2) represents the typical

workflow of a UI session where the user selects an initial parameter and subsequently

narrows down the available options to select a final product. This might be a map,

graph, data file (in CF-netCDF, CSV or Shapefile formats) or the outputs from

a Weather Generator run. Whilst many of the pages are straightforward PHP/

JavaScript/CSS rendering of HTML forms, there are three particularly important

pages in terms of the user experience. These (the Location page, Graphics page and

Jobs page) provide specific functionality detailed below.

2.3.1 Web-map client on the location page

The data available from UKCP09 is modelled at varying spatial resolutions and on

different projections. Depending on the product, users can select from varying location

types, ranging from a single grid box (5�25 km resolution) to an aggregated region

(such as south-west England). Figure 3 shows a screenshot of the web-map client

on the location page, alongside the functionality required to deliver this product. The

OpenLayers JavaScript web-map client was chosen because it provided the appro-
priate utilities. Its open source nature also allowed extension and modification where

necessary. The map client was customised to display multiple overlays and to per-

form complex selections such as the highlighting of multiple adjacent grid boxes.

2.3.2 Modifying and viewing outputs on the graphics page

A major drawback with the page-based request builder model was the problem of

having to click through multiple pages to select parameters and generate output. This

could become particularly frustrating when the user required very similar outputs

differing by only one or two parameter selections. The graphics page was conceived

as the solution to this problem as it allows limitless modification, viewing and saving

of outputs without re-loading the page. Figure 4 shows the main functional elements

of the graphics page. Once familiar with this page, a user can generate a request and

download the outputs within a few clicks. Each new request is saved to the database

and can be accessed subsequently on the jobs page (described below).

48 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

When the user selects a ‘Re-load plot. . .’, ‘Save Image As’ or ‘Save data As’

action, the graphics page generates an AJAX request that calls services in the SOA

layer. The response is either saved directly to the user’s computer or, in the case of

image outputs, can be previewed within the page before download. In the case of

some mapped outputs, the user can zoom, pan and display values on the map-client

within the graphics page. For many graphed outputs, the user can hover over the

image to view the actual data values. The graphs, maps and underlying data can be

downloaded in various formats, including options for publication-quality image

outputs.

2.3.3 Providing access to current and previous requests via the jobs page

More complex requests, such as those for weather generator simulations, are

processed asynchronously. The user is prompted to confirm a request submission

based on the estimated processing time and volume of the outputs. Once the job

has been submitted, the UI presents the user with the jobs page and continues to

make AJAX calls to the SOA layer to provide the processing status of the offline

job. When the job has completed, the outputs and metadata related to the request

automatically appear in the user’s list of previous jobs (on the jobs page) and the user

is also notified by e-mail. The jobs page acts as a store of all requests submitted by

an individual user, allowing outputs to be downloaded, requests to be re-run and

post-processing of results using other UI utilities where applicable. This also provides

a means to share results with other UKCP09 users and can be used as a mechanism

for short-cutting the full request-building process.

Figure 3. The web-map client on the location page and its functional requirements list.

International Journal of Digital Earth 49

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

2.4 Service-oriented architecture layer

The SOA layer runs the web services that generate all the maps, graphs and

data products within the system. This layer operates as a set of Python applications

using the Pylons framework running inside of the mod_wsgi Apache module. The

SOA layer receives HTTP GET or POST requests for a product from the UI

and either farms them out to one of its multi-processes, dispatching a response

within 15 seconds, or scheduling the job with the offline processing layer.

The requirement for the SOA layer was to deliver a range of different

products including map tiles, graphs and data files. The Open Geospatial

Consortium (OGC) specialises in the development of standards for geospatial

data storage and exchange. For generating tiles for the UI interactive map-client,

the OGC Web Mapping Service (WMS 2006) was an obvious technology choice.

WMS is an accepted and commonly used standard, providing interoperability

via a well-described interface. The developers also had pre-existing in-house

software components that could be re-factored to provide the UKCP09 WMS

capability.

Catering for jobs that would run for different durations and produce a range

of different outputs required a solution that managed both in-process execution of

processes and asynchronous job management. When selecting a tool or framework

to deliver this flexibility, the OGC Web Processing Service (WPS 2007) specifica-

tion was considered a suitable candidate. Whilst still in its infancy, the WPS

interface provides a means of wrapping up arbitrary processes (such as GetAPlot

or RunAModel) in a common framework with the following advantages:

Figure 4. The graphics page of the UKCP09 UI, with the key functional elements highlighted.

50 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

� Web service interface, using POST or GET

� Asynchronous reporting and control of jobs

� A defined XML interface for responses, including exceptions

� A common format for passing arguments to the server
� Job status interrogation

The available open source implementations of WPS were not well developed at

this time. Since the project developers already maintained an open source toolkit

containing a WMS implementation (CEDA OGC Web Services or COWS [Pascoe

et al. 2010]), it made sense to add the WPS capability to this stack. The resulting

tool, known as the COWS-WPS, includes the ability to:

� inform users when a job has completed (or failed).

� provide a configuration system that allows new processes to be added via a

simple configuration file and a single Python interface module. This feature is

available only to the WPS administrator in the current implementation and

new processes are identified after the service is restarted. However, the ‘plug-

in’ methodology could be extended to allow authorised users to add processes

at runtime.

� connect to a scheduling tool that communicates with external offline proces-
sing nodes. The SOA layer and the offline processing layer share a file system

which allows either layer to read/write status information to a single location.

� run a multiple-processor server application with ‘quick’ tasks within a worker

pool of connected processes.

� make a ‘costonly’ (or ‘dry-run’) request before submitting a job that results in

an estimate of the response size and duration without actually executing the

job. This is implemented as an additional argument to the WPS Execute

Request, making it available for use with all processes.
� report a job history for the entire system or the individual user.

� zip up groups of output files and report details of their contents in the XML

response. This functionality enabled selecting and viewing of thumbnail plots

within the UI graphics page.

A specific feature of the system that required a great deal of integration between the

PHP/JavaScript UI and the Python WPS was the tracking of user jobs via the UI

jobs page. The WPS specification provided a mechanism for presenting a persistent
URL that returns the status of a given job. The UI employed AJAX technology to

poll this ‘status URL’, parsing the XML and displaying a table of outputs that can be

interrogated by the user. For accessing information about previous jobs, an

additional process was deployed under the COWS-WPS that returns an XML-

encoding of the metadata for previous jobs issued to the WPS by a given user. This

extension of the WPS capability is likely to be an essential requirement of any

implementation that includes asynchronous job management.

2.5 Offline processing layer

The offline processing layer was created in order to handle large data extractions and

weather generator runs that might take hours to process and could potentially

International Journal of Digital Earth 51

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

require significant computing resources. It was considered that the majority of users

would require access to graphical outputs, and therefore to reduce the impact on the

UI and SOA layers providing these outputs a separate and controlled environment

was developed for offline jobs. Also, controlling the number of concurrent jobs and

queue management can be better handled by tools dedicated to that purpose. The

processes running in this layer are managed by Sun Grid Engine (SGE), a scheduling

tool configured to manage a fast and a slow queue to handle requests of different

sizes from the WPS in the SOA layer. Whilst the offline processing layer limits access

on a one job-per-user basis, the SOA layer is unrestricted, and so users can continue

to generate image and small data products whilst a large job is running.

Each job is managed via a Python wrapper module that has the ability to report

its status to a simple text file. Lengthy processes routinely update this file with

information on the percentage of the task that has been completed. When the UI

polls the WPS for information about a current job, the WPS uses the status URL

to identify the job and reads the contents of the status file. The current status is

then serialised into the Execute Response XML document (specified in the WPS

standard) returned to the UI.

2.6 State management layer

Whilst the read-only components of the front-end, web services and the offline

processing could be parallelised, the management of state needed to be treated

differently. There are two main areas of state management, the individual UI session

(stored in a database) and the longer-term cache of outputs requested by users

(stored on hard disk). A user session, or user-driven process, has no specific binding

to a given VM, and so a series of interactions can be dealt with by any node in the

parallelised system. This required the database and cache disk to be accessible, and

identical, on all nodes. The preferred solution was to provide a single instance of

each state component connected to all VMs.

The three components of the system required to interact with all nodes in the

system were as follows:

� Load-balancer: The HAProxy load-balancer tool distributes HTTP requests to

the UI and SOA layers. All requests are received by HAProxy initially before

forwarding to the appropriate VM in a round-robin configuration.

� Database: A PostgreSQL database managing the state and history of user
information, sessions, requests and offline jobs.

� Cache disk: Request outputs are written to a cache disk which is NFS-

mounted across VMs in the offline processing and SOA layers.

The danger of managing state in this manner was the introduction of single points of

failure. This was mitigated by housing the load-balancer, database and cache disk on

a pair of VMs in active/passive failover mode. The ‘state’ VM runs the live services

whilst the ‘backup state’ VM routinely copies its state from the live version. Through

the combined use of database dumps and Rsync mirroring of the cache disk, it was

possible to continually synchronise the ‘backup state VM’ within 1 hour of the live

52 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

system. Subsequent testing showed it was possible to reinstate the backup system

within 2 hours of a failure to the ‘state’ VM.

2.7 System overview

The overall system functions by a significant amount of interactions between

the different components described in the previous sections, whether for a wea-

ther generator simulation run, or for access to one of the other data sources. The

connections between the UI layer, the SOA layer and offline processing layer are

highlighted in the following system interactions involved in an example of a weather

generator request:

(1) User logs into UI and selects to run a weather generator job.

(2) User steps through the request builder pages configuring the request

parameters.

(3) The UI contacts the WPS in the SOA layer to request the ‘cost’ of the job.
(4) The WPS returns an XML response that the UI parses to inform the user of

the output size and job duration.

(5) User confirms submission of the job and is forwarded to the UI jobs page.

(6) The WPS submits the job by contacting the SGE ‘submit host’.

(7) The WPS sets the job status as ‘accepted’.

(8) The SGE ‘submit host’ decides an appropriate queue to submit the job to.

(9) The job is placed in the SGE queue.

(10) The job is run on one of the SGE ‘execute hosts’ in the offline processing
layer.

(11) The job is run from the command-line on the ‘execute host’ and it routinely

updates the status file with the percentage completion time.

(12) The UI keeps track of, and routinely polls, the status URL of the request to

get the status of the job from the WPS layer.

(13) On completion of the job the offline processing layer updates the status of

the job and mails the user.

(14) The UI polls the status URL and identifies that the job is finished at which
point it becomes visible via the jobs page.

Figure 5 provides a view of the main outputs delivered by the UKCP09 user interface.

The raw data encompasses weather generator simulations, large data subsets and

small requests for the data underlying graphical outputs. Once users have navigated

through the request builder, the final page always presents a range of available output

types, filtered based on their previous selections.

3. Discussion

This section presents a discussion of the approaches described in Section 2. It

begins with a review of the requirements, followed by comments on the use of

standards, free and open source software (FOSS) and the provision of a robust

system.

International Journal of Digital Earth 53

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

3.1 Meeting the requirements

The process of identifying end-users for the UK climate projections highlighted

the varied nature of those needing to consider climate change impacts in their

decision making. A profile of the current users includes national and local

governments and commercial, public and academic sectors working in fields ranging

from nature conservation to construction. The requirements of each user group

vary from generating a small set of temperature and rainfall maps to the ability to

download almost the entire probabilistic data set to use as inputs for Climate

Impacts Models.

The requirements for this project are still evolving as the scientists, stakeholders

and end-users discover what questions need to be asked and how they can be answe-

red via this novel interface. A significant challenge in writing the user guidance was

attempting to provide both summary and detailed information about the underly-

ing system and the science. The layout and delivery of the support documentation

needed to be well organised and logically accessible to prevent users from being

overwhelmed with information (Street et al. 2009). The complex relationships between

the data sets and their parameters further complicated the data delivery process

as various routes through the system involved navigation through multiple pages.

However, the ‘request builder’ approach was preferred because it constrained the

amount of guidance required per page and allowed the information to be related to

particular parameters displayed on each page, rather than displaying all at once.

In response to the six main requirements in Section 2.1, it is clear that the

parallelised and layered architecture was constructed to ensure scalability, robustness

Figure 5. The main outputs delivered by the UKCP09 user interface.

54 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

and high availability (requirements 2, 4 and 6). The design was compartmentalised

into various functional elements to ensure a clear separation of concerns that would

guarantee each component an appropriate allocation of computing power. The SOA

layer and the UI layer provided a set of web-accessible services (requirement 1) that
could interact with the offline processing layer (requirement 3) for handling large

requests. Issues of security and user access (requirement 5) are discussed later in this

section.

In generating the requirements for the UI part of the system, the project

undertook a review of other websites delivering climate information and products.

This highlighted many desirable and undesirable aspects about a range of sites. The

key aspects of the review are summarised in the UI requirements listed in Section 2.1

and are subsequently reviewed here.
The diverse user community required easy access to help and guidance focussed

both around the UI and the underlying science behind the available data products

(requirement 7). UKCIP provided the majority of the scientific guidance about

UKCP09 and identified the importance of providing information in uncomplicated

language in a hierarchical fashion. This enabled both expert and non-expert users

(requirement 10) to dig down into the support information at their convenience.

Furthermore, information icons () facilitated access to both the UI Manual and

scientific guidance as hover-overs. The data itself were mainly delivered through the
graphics page, offering users the ability to customise and download publication-

quality graph and map outputs within a single web page (requirement 8). As the user

generated these requests within the request builder process, each selection was

subsequently saved after each page, enabling users to return to a partially complete

request at their convenience without having to restart (requirement 9).

3.2 Use of standards and free and open source technologies

Web standards help to define rules for storing, integrating and using data, services and

source code. The World Wide Web Consortium (W3C) drives the development

and use of standards within the web community. The successful delivery of this project

can be partially attributed to the extensive use of standards to aid interoperabi-

lity between the chosen components. The OGC Web Mapping Service and Web

Processing Service have been employed within the system to disseminate and remotely

process geospatial data via the web. Furthermore, a common communication layer

between multiple web applications was provided via the Python Web Server Gateway
Interface (WSGI). The underlying six-dimensional geospatial climate data set was

encoded using the de-facto NetCDF standard, a platform-neutral storage format

which is supported by a range of free libraries and tools. The use of these standards

allowed the development of a distributed architecture from a range of independent

components.

The definition and use of standards is key in the quest for interoperability.

However, many standards are still in flux, and so most projects select those that

they consider important. Within this project, standards were adhered to where
possible but in some cases were modified in order to meet the required functionality.

A particular example was the OGC WPS specification. Still at version 0.4.0 when

the project began, the WPS 1.0 specification was approved in February 2008 but it is

still relatively immature (Michaelis and Ames 2009). WPS provided a very useful

International Journal of Digital Earth 55

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

generic container for a host of ‘processes’ that might have otherwise been deployed

as bespoke web services. The implementation within the COWS-WPS extended the

specification in terms of adding the new arguments to the execute request signature

(‘costonly’ and ‘inform’) as well as a process for accessing previous job details. WPS

1.0 introduced the concept of application profiles as a means of providing and

publishing domain-specific processes to aid interoperability in terms of building

clients and utilising the publish/find/bind paradigm (Lanig and Zipf 2010). In the

case of this project, the outputs were highly tailored, and so in most cases the

processes were unlikely to be generally applicable to other climate-related data sets.

However, the development of application profiles for more general climate-plotting

processes would be beneficial as there are common requirements for plotting tools

outside the two-dimensional view covered by WMS. The tools developed within the

COWS stack are now being taken on by other projects both in-house and externally.

The underlying climate projections were over half a terabyte in size and for this

reason a binary file format was considered appropriate for managing the data

archive. The CF-NetCDF format was chosen because of its widespread adoption

demonstrated by its usage by the international research community for exchange of

climate simulations in the third Climate Model Intercomparison Project (CMIP3

[Meehl et al. 2007]). An alternative approach would have been to use the emerging

Sensor Web standards such as the Sensor Observation Service (2007) or a profile of

the OGC Observations and Measurements (2007) standard. The CF-NetCDF option

was considered more appropriate because the tooling and experience already existed

in the scientific user community.

FOSS can describe code that can be viewed, modified and redistributed by

developers without imposing the same property right restrictions that are synonymous

with proprietary software (Waring and Maddocks 2005). The advantages and

disadvantages of using FOSS are well documented and summarised in Waring and

Maddocks (2005), Cerri and Fuggetta (2007) and Kemp (2009). The combination of

using open source and standards-compliance enabled heterogeneous software

components to be integrated into one system within this project. The FOSS tools

utilised were generally platform-agnostic, enabling client and server-side components

to be developed and tested without being tied to a particular platform or environment.

The full technology stack is presented in Table 1, illustrating a range of open source

technologies deployed within this project. The integration of FOSS and in-house

software facilitated delivery of a scalable, flexible and robust system.

All the technologies employed have stood up well within the production system.

Some deserve a particular mention because of the impact they had on the

development cycle and the deployment process:

� JQuery: provides robust cross-browser support for a range of useful JavaScript

functions. It also works side-by-side with other JavaScript libraries such as

OpenLayers.
� The Web geo-stack of OpenLayers, TileCache, GeoServer and PostGIS:

provides an incredibly powerful toolkit for complex map applications

employing OGC standards where appropriate.

� Pylons: provides a Python web development environment that rivals Ruby on

Rails. It allows rapid deployment of Python-based websites and web services

56 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

using the WSGI standard. It also plugs and plays with Apache and other

standard tools.

� Subversion: provides an invaluable means for the team, distributed across
three sites, to work on a common code base. With clients for various platforms

each developer used its own IDE of choice and was able to deploy local

versions of services for testing.

3.3 Performance and reliability

Since the launch in June 2009 there has been extensive use of the UKCP09 system.

During this period, there has been very little downtime (B0.5%), most of which

has been pre-scheduled. The parallelised architecture has stood up very well to both
high-demand and usage over time, allowing rapid bug-fixing, VM management

and maintenance without disruption to the user experience. A significant success

during the launch period was the introduction of an additional 12 VMs at very

short notice to handle high demand. This involved the temporary acquisition of

Table 1. The technology stack and standards used within this project.

Type of tools and/or

technologies Tool technology or language* Relevant standards

Load-balancing and

caching

HAProxy, TileCache HTTP

Web-interface Apache, PHP, JavaScript$, JQuery,

OpenLayers, Zend Lucene, Proj4JS

XML, HTML,

ECMAScript, CSS, WMS,

WMS-tiling

Database PostgreSQL, PostGIS SQL, OGC Simple

Features for SQL

Web services, data

manipulation and

visualisation code

Apache, mod_wsgi Apache module,

GeoServer, Tomcat, Pylons,

SQLAlchemy, cows-wps%, cows-wms%,

Python, R, MatPlotLib, CDMS,

NumPy, Shapelib

WPS, WMS, WSGI, XML

Scheduling and

processing

Sun Grid Engine$, Fortran (F/V),

Java$, Python

Testing and monitoring Nmon, JMeter, System check%, Pylot,

Python Nose, Python PyUnit, Apache

Benchmark, NetBeans, Firebug,

Selenium, IETester, MultipleIEs$,

OpenSSH

Management tools Trac, Subversion

System and deployment

tools

Xen, VM image replication tools%,

Rsync, Python, Buildout, Python

easy-install

Operating system OpenSUSE 10.3

*Most tools, technologies and languages are considered free (by which we mean ‘licenced for usage
without a fee’) and open source, except those indicated below.
$Not open source but licensed for usage without a fee.
%Tools developed within the project � made available on an open source licence.

International Journal of Digital Earth 57

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

six physical servers from another project, installation of the VM hosting software,

deployment of VMs and re-configuration of the load-balancer, all of which was

achieved in less than a week. Other factors that have significantly contributed to the

robustness of the system are discussed below.

3.3.1 System protection

All web-accessible computing resources require some level of protection against

malicious attacks as well as high demand that can overload and compromise the

system. Protection against malicious attacks requires rigorous protection of servers

and configuration of firewalls. Locking down access to servers and databases by IP

address is a typical approach to this problem.

In order to protect against very high demand, the following measures were put in

place:

� Over 500,000 requests were pre-run and cached within the system. These were

typically requests for graphs which would take from 2 to 20 seconds to

produce. Pre-caching the most likely requests reduced the load on the servers

and allowed more concurrent sessions to be handled.
� The parallelised system was another means of reducing the impact of high

demand by spreading the load across multiple VMs.

� A limit (1000) was set on the number of concurrent sessions allowed. Any

attempts to login over that number would be politely asked to try again later.

3.3.2 Testing, benchmarking and monitoring

As the project neared completion, the use of testing and benchmarking techniques

became critical to highlighting design issues, bugs in the system and performance

factors. Automated testing tools such as Python Nose and Selenium were employed to

rapidly test front- and back-end components. Two particular aspects of testing that

paid dividends in delivering the final system are discussed briefly here. During early

deployment, integration tests of the WPS plotting processes demonstrated that a

third-party library was not thread-safe. This was a silent failure in that the processes

all ran to completion without reporting any errors. It was only upon inspection of

the image outputs that the problem was visible, with plot axes and annotation

being randomly ‘shared’ between different outputs generated by concurrent WPS

processes. This required modification of the core WPS code to move from a multi-

threaded application server to a multi-process model using a worker pool. The WSGI

environment and application stack allowed this change to be ‘plugged-in’ at the

web server layer with minimal change to the code base. The second very significant

testing scenario involved a third-party contractor employed to assess the overall

system performance under varying loads. This performance testing used the FOSS

tool JMeter to deploy very heavy loading on both the UI and SOA layers of the

system. This test was used to assess the capacity of the parallelised services and

58 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

provided stakeholders with assurance that the system would stand up to intensive

usage during the launch period.

Another key factor in protecting the system was constant monitoring. A set of

system-checking tools was developed to handle monitoring of disk space, access to
servers, access to cross-mounted disks, responses from known URLs, response times

and database access. In addition, access from outside the system was monitored to

highlight any issues that might be firewall related. Furthermore, all warnings and

errors recorded by the system-checker, and by the UI code itself, resulted in an e-mail

and/or SMS message to the administrators. This set of checks provided, and still

provides, an almost instantaneous indication of the state of the entire system.

4. Conclusion

This project demonstrates how a heterogeneous web application can be built with

different technologies and languages using common standards within a service-

oriented architecture. The UKCP09 project involved a large number of stakeholders

directing the course of a novel user interface to deliver cutting-edge climate science

to both sophisticated and non-expert users. The resulting UI fronts a multi-layered

parallelised architecture built on a range of open source tools and technologies,
adhering to standards where appropriate. The technology stack employed within the

project consists of many exemplary tools. The use of such FOSS alternatives to

proprietary software is likely to increase with time in publicly-funded IT projects as

public sector managers are encouraged to avoid long-term contracts that can lead to

vendor tie-in.

A range of exceptional technologies now exist in the free and open source

communities that, combined with the power of modern browsers and high-speed

internet, provide a basis for delivering very sophisticated tools for presenting
scientific information. As internet technologies and the science of climate prediction

continue to evolve, there is every reason to be excited about the interactive tools

that will be used to deliver future climate projections. The ability to disseminate this

type of scientific data across the internet, through the combination of open source

technologies, can help a wider range of decision-makers understand the potential

impacts of climate change in the UK, and recognise the consequences this may have

on the environment and future economic development.

Acknowledgements

We acknowledge all members of the UKCP09 Project Management Group, and the following
individuals for their help and efforts within the project: Geoff Jenkins, David Sexton, Vassilis
Glenis, Chris Kilsby, Phil Jones, Colin Harpham and Peter Norton.

Notes on contributors

Mr Ag Stephens is the Collaborative Projects Manager at the British Atmospheric Data
Centre and its parent organisation CEDA. His work involves overseeing collaborations with
the UK Met Office and other research groups funded by the Natural Environment Research
Council and UK Government departments. Ag led the development of the UK Climate

International Journal of Digital Earth 59

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

Projections (UKCP09) User Interface and data services. He is currently developing the
Python-based COWS Web Processing Service as a general service container and is keen to
explore the wider role of WPS in the OGC Web Services landscape.

Mr Philip James is a Senior lecturer in GIS at Newcastle University. He graduated from
Newcastle University in 1987 with a degree in Japanese and worked at Nissan for a number of
years before returning to the University as a systems programmer in the Department of
Surveying. He primarily works with colleagues in climate and transport within the School
of Civil Engineering and Geosciences integrating data through information technology and
geospatial technologies and standards.

Mr David Alderson graduated with a first class Honours degree in Geographic Information
Science from Newcastle University, in 2005. He was subsequently appointed Research
Associate in GeoInformatics at Newcastle University. He has worked on many projects,
including helping to develop the components of the UK Climate Projections ’09 (UKCP09)
user. His research has focussed around the management, delivery and dissemination of
geospatial data, specifically focussing on the use of open source products and tools. He is
currently employed as a named researcher on the UK Infrastructures Transitions Research
Consortium (ITRC), funded by the Engineering and Physical Sciences Research Council
(EPSRC).

Dr Stephen Pascoe is a software engineer specialising in data access systems for the Earth
System Sciences. He has a PhD in Atmospheric Chemistry from the University of Leeds and
has worked at the British Atmospheric Data Centre for the past 7 years. Stephen is a principle
developer of the CEDA OGC Web Services Framework (COWS) and develops operational
websites on top of COWS’ WMS, WCS and WPS support. He is active in various international
collaborations designing technology standards and implementations including being BADC’s
technical lead in the IS-ENES EU Framework-7 Project and member of the Earth System
Grid Federation technical committee.

Mr Simon Abele is a Research Associate in Geoinformatics/GIS at the School of Civil
Engineering & Geosciences (CEG), Newcastle University, UK. He previously helped to build
the UKCP09 User Interface (UKCP09-UI) and was primarily responsible for implementing
geospatial web services to support geospatial data storage, processing and delivery. His
research interests include; Open Source geospatial standards, real-time geospatial data access,
processing, storage and analysis, geospatial metadata, search and discovery, vernacular
geography, geospatial cloud computing, and their application in addressing the problems
encountered in engineering and geosciences. He holds a degree in Geographic Information
Science (GIS) from Newcastle University.

Mr Alan Iwi is a research scientist at the British Atmospheric Data Centre. Since completing
his D.Phil. in atmospheric physics at Oxford University he has worked on a number of projects
involving climate models. Alan is currently a named researcher on the VALOR project, funded
by the Natural Environment Research Council.

Mr Peter Chiu is the Systems Support Manager for the British Atmospheric Data Centre. He
is the administrator of a network of over 200 servers running a range of Linux-based operating
systems as well as a data archive of around a petabyte. Peter has significant experience in
deploying virtual machine environments for robust scalable systems.

References

CEDA OGC Web Services, 2010. Available from: http://cows.badc.rl.ac.uk/cows_wps.html
[Accessed 10 December 2010].

60 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

http://cows.badc.rl.ac.uk/cows_wps.html

Cerri, D. and Fuggetta., A., 2007. Open standards, open formats, and open source. Journal of
Systems and Software, 80 (11), 1930�1937.

FINESSI Web Tool, 2007. Available from: http://www.finessi.info/finessi/ [Accessed 10
December 2010].

Freedom of Information Act, 2000. Available from: http://www.opsi.gov.uk/acts/acts2000/
ukpga_20000036_en_1 [Accessed 10 December 2010].

Goodess, C.M., et al., 2007. Climate scenarios and decision making under uncertainty. Built
Environment, 33 (1), 10�30.

Gordon, C., et al., 2000. The simulation of SST, sea ice extents and ocean heat transports in a
version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics,
16, 147�168.

Granell, C., Dı́az, L., and Gould, M., 2010. Service-oriented applications for environmental
models: reusable geospatial services. Environmental Modelling and Software, 25 (2), 182�198.

Hewitt, C.D., Goodess, C.M., and Betts, R.A., 2009. Towards probabilistic projections of
climate change. Proceedings of the Institution of Civil Engineers. Municipal Engineer,
162 (1), 33�40.

Jones, P., et al., 2009. Projections of future daily climate for the UK from the Weather Generator.
Newcastle-Upon-Tyne, UK: Newcastle University.

Kemp, R., 2009. Current developments in open source software. Computer Law and Security
Review, 25 (6), 569�582.

Lanig, S. and Zipf, A., 2010. Proposal for a Web Processing Services (WPS) application profile
for 3D processing analysis [online]. In: Second international conference on advanced geographic
information systems, applications, and services, Geoprocessing 2010, 10�16 February 2010,
Netherlands, Antilles. Available from: http://www.computer.org/portal/web/csdl/doi/10.1109/
GEOProcessing.2010.25 [Accessed 4 March 2011].

Meehl, G.A., et al., 2007. The WCRP CMIP3 multi-model data set: a new era in climate
change research. Bulletin of the American Meteorological Society, 88 (9), 1383�1394.

Michaelis, C.D. and Ames, D.P., 2009. Evaluation and implementation of the OGC Web
Processing Service for use in client-side GIS. GeoInformatica, 13 (1), 109�120.

Murphy, J., et al., 2009. UK climate projections science report: climate change projections.
Exeter: Met Office Hadley Centre.

OpenLayers, 2010. Available from: http://openlayers.org/ [Accessed 10 December 2010].
Pascoe, S., Stephens, A., and Lowe, D., 2010. Pragmatic service development and customization

with the CEDA OGC Web Services framework [online]. In: European Geosciences Union
General Assembly, 2�7 May 2010, Vienna. Available from: http://cedadocs.badc.rl.ac.uk/773
[Accessed 10 December 2010].

Python Web Server Gateway Interface (WSGI), 2010. Available from: http://www.wsgi.org/
wsgi [Accessed 10 December 2011].

Serrano, N. and Aroztegi, J.P., 2007. Ajax Frameworks for Interactive Web Apps. IEEE
Internet Computing, 24 (5), 12�14.

Solomon, S., et al., 2007. Contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change. UK: Cambridge University Press.

Street, R.B., Steynor, A., Bowyer, P., and Humphrey, K., 2009. Delivering and using the UK
climate projections. Weather, 64 (9), 227�231.

The Open Geospatial Consortium (OGC), 2010. Available from: http://www.opengeospatial.
org/ [Accessed 10 December 2010].

The Open Geospatial Consortium (OGC) Observations and Measurements, 2007. Available
from: http://www.opengeospatial.org/standards/om [Accessed 4 March 2011].

The Open Geospatial Consortium (OGC) Sensor Observation Service, 2007. Available from:
http://www.opengeospatial.org/standards/sos [Accessed 4 March 2011].

The Open Geospatial Consortium (OGC) Web Mapping Service (WMS), 2006. Available
from: http://www.opengeospatial.org/standards/wms [Accessed 10 December 2010].

The Open Geospatial Consortium (OGC) Web Processing Service, 2007. Available from:
http://www.opengeospatial.org/standards/wps [Accessed 10 December 2010].

The World Wide Web Consortium, 2010. Available from: http://www.w3.org/ [Accessed 10
December 2010].

International Journal of Digital Earth 61

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

http://www.finessi.info/finessi/
http://www.opsi.gov.uk/acts/acts2000/ukpga_20000036_en_1
http://www.opsi.gov.uk/acts/acts2000/ukpga_20000036_en_1
http://www.computer.org/portal/web/csdl/doi/10.1109/GEOProcessing.2010
http://www.computer.org/portal/web/csdl/doi/10.1109/GEOProcessing.2010
http://openlayers.org/
http://cedadocs.badc.rl.ac.uk/773
http://www.wsgi.org/wsgi
http://www.wsgi.org/wsgi
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/om
http://www.opengeospatial.org/standards/sos
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wps
http://www.w3.org/

UK Climate Change Risk Assessment, 2010. Available from: http://www.defra.gov.uk/
environment/climate/adaptation/ccra/index.htm#assessment [Accessed 4 March 2011].

UKCP09 UI manual � User interface manual: 1 Introduction, 2009. Available from: http://
ukcp09.defra.gov.uk/content/view/1145/537/ [Accessed 10 December 2010].

Waring, T. and Maddocks, P., 2005. Open source software implementation in the UK public
sector: evidence from the field and implications for the future. International Journal of
Information Management, 25 (5), 411�428.

Xen, 2010. Available from: http://www.xen.org [Accessed 10 December 2010].

62 A. Stephens et al.

D
ow

nl
oa

de
d

by
 [

am
ye

 o
st

i]
 a

t 1
3:

40
 0

9
Ja

nu
ar

y
20

12

http://www.defra.gov.uk/environment/climate/adaptation/ccra/index.htm#assessment
http://www.defra.gov.uk/environment/climate/adaptation/ccra/index.htm#assessment
http://ukcp09.defra.gov.uk/content/view/1145/537/
http://ukcp09.defra.gov.uk/content/view/1145/537/
http://www.xen.org

