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ABSTRACT
Remote-sensing methods are being used to study 
a growing number of issues in the San Francisco 
Estuary, such as (1) detecting the optical 
properties of chlorophyll-a concentrations and 
dissolved organic matter to assess productivity 
and the nature of carbon inputs, (2) creating 
historical records of invasive aquatic vegetation 
expansion through space and time, (3) identifying 
origins and expansions of invasions, and 
(4) supporting models of greenhouse-gas 
sequestration by expanding restoration projects. 
Technological capabilities of remote sensing 
have likewise expanded to include a wide 
array of opportunities: from boat-mounted 
sensors, human-operated low-flying planes, 
and aerial drones, to freely accessible satellite 
imagery. Growing interest in coordinating these 
monitoring methods in the name of collaboration 
and cost-efficiency has led to the creation of 
diverse expert teams such as the Remote Imagery 

Collaborative, and monitoring frameworks 
such as the Interagency Ecological Program 
Aquatic Vegetation Monitoring Framework and 
Wetland Regional Monitoring Program. This 
paper explores the emerging technologies and 
applications of various methods for studying 
primary producers, with an emphasis on remote 
sensing.

KEY WORDS
remote sensing, satellite, UAS, multispectral, 
hyperspectral, LiDAR, SAR, primary producers, 
vegetation, phytoplankton 

INTRODUCTION
Over the past 4 decades, the availability and 
use of satellite observations of the Earth’s land 
surface and its oceans have transformed our 
understanding of primary production and the 
global carbon cycle (Xiao et al. 2019; Brewin et 
al. 2021). Sensors mounted on satellite platforms 
have provided synoptic, systematically repeated 
measurements over the Earth’s oceans and 
continents. The data have enabled (1) assessments 
of the spatial patterns and temporal variability 
of primary producers, (2) estimates of primary 
productivity, and (3) improvements of primary 
productivity models. Recent advances in 
sensor instruments, platform technologies, 

 SPECIAL ISSUE: STATE OF BAY–DELTA SCIENCE 2022

Remote Sensing of Primary Producers in the Bay–Delta
Erin Hestir*1, Iryna Dronova2

https://doi.org/10.15447/sfews.2023v20iss4art5
mailto:ehestir@ucmerced.edu


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

2

VOLUME 20, ISSUE 4, ARTICLE 5

and computing tools—coupled with a concerted 
intergovernmental effort to advocate free and 
open data—have increased the availability of 
remotely-sensed data products at finer spatial, 
temporal, and spectral scales (GEO 2015). Thus, 
our ability to observe complex ecosystems such as 
those of the San Francisco Estuary (encompassing 
the San Francisco Bay, Suisun Marsh, and 
Sacramento–San Joaquin Delta; hereafter 
“estuary”) has also increased. Remote sensing 
is now widely recognized as a key measurement 
technique to assess and monitor primary 
producers and primary productivity.

In the estuary, remote sensing is a powerful 
and cost-effective tool to enrich ongoing 
research efforts on primary producers in a 
geospatially explicit context, often with regular, 
repeated sampling that enables measurements 
of seasonal and longer-term variability. 
Because remote sensors often make tens to 
hundreds of distinct measurements across the 
electromagnetic spectrum, the data have high 
information content that is spatially explicit 
and can be used to simultaneously estimate and 
map multiple parameters of interest, such as 
chlorophyll-a, colored dissolved organic matter, 
suspended sediments, and the discrimination 
of phytoplankton functional types in the water 
column (Palacios et al. 2015; Fichot et al. 2016; 
Jensen et al. 2019). Remote sensing allows for 
synoptic sampling across relatively large areas 
(depending on the platform), thus enabling 
systematic and simultaneous measurements 
across both terrestrial and aquatic domains and 
ecosystems at the land–water interface, such 
as wetlands, which are notoriously difficult to 
access via boat, foot, or other vehicle (Wu 2018). 
No other measurement technology affords such 
cross-domain advantages and the ability to collect 
data over inaccessible areas. Finally, remote 
sensing provides a powerful complement to in 
situ observations, which provide detailed but 
highly localized information, and may be sparsely 
distributed in space or time or both (Balsamo et 
al. 2018).

The Ecosystem of Sensing
To conduct remote-sensing measurements, 
sensors are mounted on platforms such as 
satellites, airplanes, or unoccupied aircraft. 
Sensors, including cameras and spectrometers, 
may also be mounted on fixed platforms, which 
are often co-located with micrometeorological 
eddy-covariance flux instrumentation. In situ 
observations and in situ sensing are a critical 
part of the sensing ecosystem (Figure 1). Human-

What is Remote Sensing? A Beginner’s Guide

There are as many definitions of remote sensing as 
there are texts on the subject, encompassing the broad 
(obtaining information at a distance) to the narrow 
(imaging conducted by satellites or aircrafts), with 
many different variations in between. 

In this paper, we define remote sensing as the 
measurement of reflected and emitted electromagnetic 
radiation from the surface of the Earth via a sensor 
mounted on a remote platform (such as a satellite). 
Such measurements are then converted to more 
meaningful biogeophysical variables (such as 
radiance or reflectance, elevation, or even chlorophyll 
concentration) through the application of algorithms. 

Remote sensing can be classified into two broad 
categories: passive and active. 

• Passive, or optical remote sensing, such as satellite 
and aerial photography, measures the naturally 
available energy. Measurements are made in two 
dominant wavelength regions: (1) the ultraviolet, 
visible, near-infrared, and shortwave-infrared region 
where the sun is reflected from the Earth’s surface, 
and (2) the longwave thermal to microwave region 
emitted from Earth.

• Active sensors, such as LiDAR, radar and sonar, 
provide their own energy source and then measure 
the intensity and time of the return, enabling 
inference about surface roughness, elevation, 
bathymetry and more. 

Most of the sensors operating around the world today 
are passive sensors (Khorram et al. 2012). Through 
analysis of spectral reflectance and emissivity, we 
can make inferences about the composition and 
temperature of materials on the Earth’s surface for 
every pixel in an image. For primary producers, this 
includes plant and phytoplankton functional types 
(including harmful algal blooms and invasive species), 
species or genus identification and distribution, 
chlorophyll-a and other accessory pigments, 
photosynthetic pathways, biomass, foliar chemistry 
and stress, biodiversity, habitat types and associated 
environmental conditions (Hestir et al. 2015).
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led in situ observations are often an integral 
component of the remote-sensing analysis chain, 
often serving as calibration or training data when 
mapping primary producers and estimating 
primary productivity. In situ observations are 
often used to quantify uncertainty for remotely-
sensed products, a necessary step that provides 
the basis for using measures to assess prescribed 
objectives for many management applications 
(Ciriello et al. 2021). These observations may also 
provide important complementary information 
that is unobtainable from remote sensing directly, 
such as the data collected by eddy-covariance 
flux towers or species composition of plant 
communities. In the estuary and Delta waters, in 
situ water-quality sensing via sensor networks—

such as the continuous monitoring stations 
maintained by the California Department of Water 
Resources (CDWR) and the US Geological Survey 
(USGS)—have been critical to the calibration 
and validation of remotely-sensed water-quality 
products, and provide additional information 
on the physical and chemical conditions of the 
water column (Ade et al. 2021; Gustine et al. 2021; 
Halverson et al. 2021; Lee et al. 2021). PhenoCams 
are time-lapse photography instrumentation 
that provide high-temporal-frequency local 
image observations. A growing number of eddy-
covariance greenhouse-gas flux towers coupled 
with PhenoCams provide distributed information 
about micrometeorology, carbon exchange, and 
vegetation dynamics (Knox et al. 2015; Knox et 

Figure 1 The ecosystem of sensing the San Francisco Estuary. Illustrated by Vincent Pascual with the California Office of State Publishing.

https://doi.org/10.15447/sfews.2023v20iss4art5
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al. 2017; Dronova et al. 2021). High-throughput in 
situ sensing via high-speed watercraft can rapidly 
map large areas for a key suite of aquatic physical 
and biogeochemical parameters (Downing et al. 
2017; Kraus et al. 2017), providing an excellent 
complement to regional remote-sensing products 
(Fichot et al. 2016). 

The Need and Management Context for Remote Sensing 
of Primary Producers
There is a converging need for primary producer 
assessments across multiple state, national, 
and international initiatives (Figure 2), such 
as the Ramsar Convention on Wetlands, the 
United Nations (UN) Convention on Biological 
Diversity (CBD), and California’s Executive 
Order N-82-20 established by Gavin Newsom’s 
administration in 2020 to initiate the California 
Biodiversity Collaborative. Both the US 
Environmental Protection Agency (USEPA) and 
California Water Code drive a need for water-
column algal monitoring. The Delta’s co-equal 
goals of preserving a reliable water supply and 
ecosystem restoration while maintaining unique 
cultural values, including agriculture (DSC 2019), 
and the state’s goals for reducing greenhouse 
gas (GHG) emissions (SB 2) (Deverel et al. 2017), 
closely echo the UN’s Sustainable Development 

Goals for clean water, climate action, protection, 
preserving life on land and below water, and 
supporting sustainable communities and 
economic growth. 

Because of the multi-faceted role that primary 
producers play in estuarine ecological functions 
and ecosystem services, remote sensing helps 
meet the needs of many different management 
questions and objectives. Primary producers 
are a critical component of ecological food 
webs that are a central focus of research and 
management efforts to conserve biodiversity, 
protect and restore ecological habitats, and 
predict the responses to environmental change 
of ecological populations and trophic chains 
(Figure 2). Remote sensing can be used to monitor 
the status of ecological communities and habitats 
shaped by primary producers from the aquatic to 
upland domains, and to project their responses to 
climate change and inform adaptive management 
efforts. Landscape-scale assessments, as well 
as monitoring and management efforts, require 
vegetation and habitat mapping at high levels 
of both spatial and ecological detail (e.g., plant 
species and communities), which is becoming 
increasingly feasible with advances in high-
spatial and high-spectral remote sensing, image-

Figure 2 Remote sensing of primary producers in relation to different research and management goals in the estuary



5

FEBRUARY  2023

https://doi.org/10.15447/sfews.2023v20iss4art5

processing methods, and machine learning. 
Management priorities that focus on trophic 
relationships and threats to their ecological 
integrity often require primary producer biomass 
and productivity to be modeled, which can be 
facilitated by remote sensing-based maps and 
spectral indicators of photosynthetically active 
biomass. In aquatic settings, this extends to 
remotely-sensed indicators of algal productivity, 
which has additional relevance to water-
quality management. Whereas, higher spectral 
resolution, which provides the capability to 
measure narrow spectral features critical to 
differentiating plant functional types and water 
column pigments, comes with a trade-off of 
reduced spatial resolution or reduced radiometric 
resolution. The latter is critical for water-column 
remote sensing (Price 1997; Hestir et al. 2015; 
Dierssen et al. 2021).

Categories of Remote Sensing of Primary Producers
Remote sensing of primary producers to meet 
management needs falls into several categories 
that differ in terms of data resolution and the 
intensity and scope of data processing. These 
categories include (1) mapping, (2) measuring, 
and (3) modeling. Mapping goals refer to 
representation of certain thematic categories 
in the landscape, including vegetation (i.e., 
categorical data). Datasets to support mapping 
goals need to be spatially explicit and should 
be able to highlight not only the presence of 
vegetation components, but also more nuanced 
distributions of target species, communities, and 
habitats, while conforming to mapping accuracy 
standards. Repeated mapping over time that 
maintains similar accuracy and error levels is 
critical for robust monitoring and assessment 
of changes in primary producer distribution 
and characteristics (Hickson and Keeler–Wolf 
2007; Hestir et al. 2012; Taddeo et al. 2019). 
Measuring applications extract information 
from a pixel’s spectral data, sometimes coupled 
with information about the spatial arrangement 
of pixels. These spectral data are then used to 
either directly estimate a specific parameter, 
such as chlorophyll-a concentration, or indirectly 
estimate parameters such as biomass or leaf area 
index (LAI) through proxies such as the popular 

normalized difference vegetation index (NDVI) 
(Byrd et al. 2014; Dronova and Taddeo 2016; 
Knox et al. 2017). Finally, remote sensing can be 
used to support ecosystem modeling, wherein 
remotely-sensed proxies for primary producers 
are integrated with other data sets and models 
that characterize ecosystem function (Anderson 
et al. 2016; Baldocchi et al. 2016; Oikawa et al. 
2017; Anderson et al. 2018; Eichelmann et al. 2018). 
Given the diverse objectives of such analyses, the 
choice of remote-sensing system and approach 
often needs to be tailored to a given management 
application, as discussed in more detail below.

Resolution Considerations
The utility of remote sensing for studying primary 
producers is largely a function of the data set’s 
resolution relative to the study or management 
application’s objective. Different phenomena and 
processes associated with primary productivity—
from photosynthesis to ecological invasions 
and plant succession—occur at different scales 
across time and space and are best measured 
by different types of remote-sensing modalities. 
In turn, remote-sensing resolution is governed 
by the properties of the sensor as well as the 
platform on which it is mounted. Remote-
sensing resolution is typically characterized 
by four different types of resolution: (1) spatial 
resolution, defined as the ground area captured 
by a single pixel, is a measure of the image 
clarity; (2) spectral resolution is the number, 
width, and sometimes range of the intervals over 
which the electromagnetic spectrum is measured; 
(3) temporal resolution is the frequency of a 
measurement; and (4) radiometric resolution 
is the lowest level of radiance or reflectance a 
sensor can measure at each spectral band. 

In general, design trade-offs between different 
facets of remote-sensing resolution must be 
considered when selecting the appropriate data 
set for a given application. Kennedy et al. (2009) 
provide a detailed overview of concepts and trade-
offs specific to landscape monitoring. As a rule of 
thumb, the spatial resolution and areal footprint 
of an image are determined by the altitude of 
the platform on which the sensor is mounted, as 
well as the properties of the sensor itself. As the 

https://doi.org/10.15447/sfews.2023v20iss4art5
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altitude of the platform increases, so does the 
capability to image a larger area of the Earth’s 
surface, but the spatial resolution decreases. 
This trade-off means that sensors mounted on 
unoccupied aerial vehicles (UAVs) and occupied 
(i.e., piloted) aircraft provide much higher spatial 
resolution (i.e., smaller pixels), but cover a much 
smaller footprint than a sensor mounted on a 
satellite. Higher spatial resolution often comes 
at a cost of lower spectral resolution because the 
amount of energy received by the detector is 
finite. 

The trade-offs between platforms also affect 
the temporal resolution of a remote-sensing 
observation. Satellites are often desired platforms 
because, when in low Earth polar orbit, they 
provide regular repeat observations every 2 to 16 
days. The frequency of the revisit is a function 
of the altitude of the platform and the swath 
width of the sensor, which again also affects 
spatial resolution and footprint size; increased 
temporal frequency results in increased swath 
size, and thus increased spatial footprint, but 
decreased spatial resolution. Occupied aircrafts 
and UAVs provide the advantages of higher spatial 
resolution and user-defined data acquisition 
timing. However, the cost of deploying such 
technologies at scale across the Delta remain 
extremely high (Bolch et al. 2021).

Most medium- to coarse-spatial-resolution 
satellite data sets (10 m to 1 km) are also often 
desirable to researchers because the data are 
often provided at no cost to the user by open-
access providers such as the National Aeronautic 
and Space Administration (NASA), the National 
Oceanic and Atmospheric Administration (NOAA), 
the USGS, and the European Space Agency (ESA). 
Higher-spatial-resolution satellite data sets are 
most often commercial and may have to be tasked 
to acquire a specific scene of interest, often at a 
cost. However, the Commercial Remote Sensing 
Space Policy has enabled US federal and civil 
agencies to work together to identify user needs 
and leverage commercial satellite assets. As a 
result, the Commercial Data Purchases Imagery 
Collection hosted by the USGS enables qualified 
federal users to obtain commercial satellite data 

at no cost (https://www.usgs.gov/centers/eros/science/
usgs-eros-archive-commercial-satellites-commercial-
data-purchases-cdp-imagery), though licensing 
restrictions often apply.

Spatial Resolution
Very-coarse-spatial-resolution data sets 
(e.g., MODIS [Moderate Resolution Imaging 
Spectroradiometer], 1-x-1-km pixel size) have 
been used to map and model terrestrial and 
marine primary productivity at the global scale 
for decades (Ryu et al. 2011; Tao et al. 2017; 
Groom et al. 2019; Brewin et al. 2021). However, 
such spatial resolution is widely viewed as one of 
the primary factors that limit applying remote 
sensing to estuarine, coastal, and inland aquatic 
and wetland ecosystems, as well as to detecting 
invasive species (Ozesmi and Bauer 2002; Hestir 
et al. 2008; Turpie et al. 2015; Bolch et al. 2020). 
The coarser pixels generally appropriate for 
marine and large-scale forestry applications do 
not capture narrow river channels, fine water 
features, spatially complex ecosystems, small 
patches of primary producers, and nascent 
invasive plant species patches—all characteristic 
of the Delta, Suisun Marsh, and other marsh-
like complexes of the estuary. While coarse-
resolution data can provide information on 
general spatial patterns and gradients, it can 
obscure inference about productivity hotspots 
and vegetation density, and may lead to difficult-
to-quantify errors in remote-sensing products 
such as spectral vegetation indices (SVIs) used 
to derive estimates of net primary productivity 
(NPP). Figure 3 illustrates the effects of spatial 
resolution on a commonly used spectral index, 
the NDVI, at a wetland site in the western Delta. 
The NDVI was calculated from imagery obtained 
from the California National Agriculture Imagery 
Program (NAIP) collected in 2018 at 0.6-m spatial 
resolution. The data were then resampled to 1-m, 
10-m, 30-m, 100-m, 250-m, and 500-m pixel size to 
the wetland site boundary (shown in red), overlaid 
on the grayscale background of the original NAIP 
image. Resampling and clipping were performed 
in ArcGIS (Esri) Desktop version 10.8 using, 
respectively, Aggregate and Extract by Mask tools, 
which preserved only NDVI pixels with their 
center inside the site boundary.

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-commercial-satellites-commercial-data-purchases-cdp-imagery
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Hestir et al. (2008) and Ta et al. (2017) recommend 
pixel sizes less than 5 x 5 m to map floating and 
submerged aquatic vegetation (FAV and SAV) in 
the Delta. Most management needs that focus 
on FAV mapping seek genus-level and species-
level maps, which necessitates such high spatial 
resolution (Khanna et al. 2012; Santos et al. 2016; 
Khanna et al. 2018). Such high-resolution data can 
only be acquired from aircraft or commercial 
high-spatial-resolution satellites. In cases where 
species- and genus-level mapping are not needed, 
pixel sizes of 30 m or less are sufficient for many 
wetland and salt marsh mapping applications 
(Turpie et al. 2015; Byrd et al. 2018; Muller–
Karger et al. 2018). In the Delta, recent work has 
shown that 30-x-30-m pixels from Landsat and 
20-x-20-m pixels from Sentinel-2 can be used to 
map wetlands, FAV and SAV, and rice paddies 
(Baldocchi et al. 2016; Ta et al. 2017; Ade et al. 
2022), and to track changes in spectral indicators 
of primary production (Anderson et al. 2016).

The uncertainty in delineating primary producer 
distributions tends to increase with coarser 
grain or larger pixel size (Kelly et al. 2011). The 
effect of larger pixel sizes leads to the mixed 
pixel problem, wherein multiple different-
vegetation types or landcover types are present 
in a single pixel, all represented by one spectral 
measurement. The mixed-pixel problem affects 
all three applications of remote sensing of 
primary producers: mapping, measuring, and 
modeling. Mixed pixels lead to classification 
errors when primary producers are mapped—
sparse and rare vegetation classes decrease 
in abundance or disappear, abundant classes 
become more dominant, and the mean patch size 
tends to increase when pixel size increases (Saura 
2002; Bolch et al. 2021). This effect is illustrated 
in Figure 4, in which a vegetation map produced 
from piloted-aircraft imaging spectroscopy (i.e., 
“hyperspectral” remote sensing) at 1.7-m pixel 
resolution is compared with a map produced from 

Figure 3 The effects of spatial resolution on mapping the Normalized Difference Vegetation Index (NDVI). The different panels show the effects of 
resampling high-resolution data to larger sizes at a wetland site in the western Delta. 

https://doi.org/10.15447/sfews.2023v20iss4art5
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an imaging spectrometer mounted on a UAV with 
data collected at 0.05-m resolution. Furthermore, 
while coarser resolution generally leads to poorer 
mapping accuracy, the effect is not always linear, 
and often depends on the heterogeneity of the 
landscape as well as the design and geolocational 
precision and accuracy of field data (Knight and 
Lunetta 2003; Frazier 2015). 

The mixed-pixel problem affects remote-sensing 
measurements of both aquatic and terrestrial 
chlorophyll-a and other proxies such as NDVI. 
As pixel size increases, the spatial information 
content of the data decreases logarithmically 
(Tarnavsky et al. 2008) and no longer conforms 
to the boundaries of landscape units of interest, 
such as wetland land parcels, as illustrated in 
Figure 3. Further, mixed pixels can lead to both 
large random errors (as much as 100%), as well 
as bias errors (i.e., estimation offsets) in remote-
sensing-derived and remote-sensing-modeled 
estimates of LAI, NPP, and algal blooms (Simic et 
al. 2004; Xu et al. 2004; Lekki et al. 2019). Larger 
pixels also inhibit water-column chlorophyll-a 
measurements because narrow channels cannot 
be resolved: there is no way to tell how much 

chlorophyll-a comes from the land, and how 
much from the water. 

The question then remains: What is the appropriate 
spatial resolution for remote sensing of primary 
producers? In principle, the minimum mapping 
unit (MMU) should define the appropriate spatial 
resolution. The MMU is the size of the smallest 
feature that is present on a map. If the feature 
is smaller than the MMU, it will not be shown 
on the map. The MMU will vary based on the 
application or management need. For example, 
the MMU for mapping primary productivity in 
rice fields in California will be larger than the 
MMU for mapping primary productivity in Delta 
marshes, given that the average size of a farm in 
California is ~140 ha (CDFA 2020), whereas the 
average patch size of marsh is ~4 ha (Robinson et 
al. 2014). If individual tree-crown mapping is the 
objective, the MMU will be either the anticipated 
average or lower quantile dimensions of the 
tree crowns in the study. The VegCAMP (2015) 
report provides more detailed guidance for MMU 
definition, but still leaves the final decision to the 
discretion of the project. Once MMU is defined, 
the spatial resolution of remote-sensing imagery 

Figure 4 The effects of pixel size on class occurrence and abundance. (A) HyMap hyperspectral sensor mounted on a manned aircraft (1.7-m pixel 
resolution). (B) Nano Hyperspec hyperspectral sensor mounted on an unmanned aerial vehicle (UAV) (0.05-m pixel resolution). Source: Figure modified from 
Bolch et al. (2021). 
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should be less than the MMU, although exact 
recommendations are not easily found in the 
literature. One study suggested spatial resolution 
should be spatial resolution , where κ is 
a conversion coefficient ranging from 0.53 to -0.85 
(L Li et al. 2019). However, this recommendation 
is not widely cited or used.  

In practice, the availability and cost of data often 
dictates spatial resolution, as well as other trade-
offs related to temporal and spectral resolution. 
For instance, medium-resolution satellite data 
(e.g., Landsat 30 m) are often selected both 
for their data accessibility (often free and 
open access) and data availability (based on 
temporal resolution). With such data there are 
solutions to the mixed-pixel problem for both 
primary producer detection and NPP mapping 
or modeling. Soft—or fuzzy—classification 
methods that assign each pixel different degrees 
of membership in several classes are often 
used to address the mixed-pixel problem. The 
most notable of these techniques is spectral 
mixture analysis, which models each pixel 
spectra as a linear combination of pure spectra 
of its landscape components (“endmembers;” 
e.g., bare soil, water, or vegetation), and thus 
enables each pixel to be mapped as fractions of 
different endmembers (Franke et al. 2009; Frazier 

and Wang 2011). This technique has been used 
successfully in the salt marsh and freshwater 
marshes in the San Francisco Bay and Delta 
(H Li et al. 2005; Rosso et al. 2005; Byrd et al. 
2014)and is an integral component in the aquatic-
invasive-species mapping framework used by UC 
Davis (Hestir et al. 2008; Khanna et al. 2018) The 
number of endmembers that can be successfully 
modeled is constrained by the number of spectral 
bands in remote-sensing data; the higher the 
spectral resolution, the more detailed and 
accurate the spectral mixture analysis will be.

Finally, biomass- and productivity-focused 
modeling efforts are also sensitive to the spatial 
scale of remote-sensing inputs (Byrd et al. 
2018; Dronova et al. 2021). This issue may be 
addressed by using different-resolution remote-
sensing products simultaneously; for instance, 
Byrd et al. (2018) reported an improvement of 
tidal vegetation biomass modeling from 30-m 
Landsat satellite imagery after including the 
fraction of green vegetation derived from 1-m 
aerial products from the US Department of 
Agriculture’s (USDA) NAIP. In another study 
that modeled evapotranspiration over the whole 
Delta, Anderson et al. (2018) combined 30-m 
Landsat imagery with lower-temporal-resolution 
(8 to 16 days) and daily coarser-resolution MODIS 

Figure 5 (A) The reflectance spectrum of three floating aquatic vegetation (FAV) species in the Delta. The fine spectral detail from high-resolution 
hyperspectral remote sensing enables discrimination of different FAV to the genus and species level. (B) The hyperspectral and multispectral reflectance of 
a green leaf. Sources: Data from S. Khanna and the USGS. 

https://doi.org/10.15447/sfews.2023v20iss4art5
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products to characterize the seasonality of plant 
function and canopy leaf area.

Spectral Resolution
All primary producers have some traits in 
common; most notably from a remote-sensing 
perspective they possess photosynthetic 
pigments. Chlorophyll and other accessory 
pigments, the structure of the cells and/or leaves, 
and the structure of the water column or canopy 
all dominate different regions of the spectral 
signal (Figure 5). Species with similar functions 
typically have similar pigment composition and 
structure, and thus tend to have more similar 
spectral signals. High-spectral-resolution data—
sometimes called hyperspectral—provides the 
ability to better discriminate primary producer 
communities and functional types, and even 
discriminate between different genera and 
species in both terrestrial and aquatic systems of 
the estuary (Rosso et al. 2005; Hestir et al. 2012; 
Khanna et al. 2012; Santos et al. 2012; Khanna 
et al. 2018). High-spectral-resolution data also 
enable estimates of biochemical composition and 
other important traits related to photosynthetic 
processes, water content, leaf area index, and 
canopy structure (Ustin and Gamon 2010; Santos 
et al. 2012; Homolová et al. 2013). In the water 
column, high-spectral-resolution data are critical 
to differentiating chlorophyll-a from other water-
quality constituents, which enable mapping of 
phytoplankton functional types and potentially 
harmful algal blooms (Ryan et al. 2014; Dierssen 
et al. 2015; Kudela et al. 2015; Dierssen et al. 2021).

Imaging spectroscopy makes measurements in 
very narrow intervals nearly contiguously across 
the optical spectrum, enabling detailed high-
resolution spectra at every pixel. Multispectral 
remote sensing makes just a few measurements 
across a broader portion of the electromagnetic 
spectrum. While less spectral information is 
contained in multispectral data, these data sets 
form the bulk of currently available, free, open- 
access remote-sensing data sets, although this 
is changing (see “Looking Ahead: The Very Near 
Future of Remote Sensing of Primary Producers in 
the Estuary”). Multispectral data provide valuable 
information about landcover (Clark 2017), the 
extent and distribution of wetlands (Quinn and 
Epshtein 2014), different vegetation communities 
and plant functional types (Villa et al. 2015; 
Ade et al. 2022), and even wetland biodiversity 
(Taddeo et al. 2019). Multispectral information 
can also be used to assess the physiological status 
of plants, primarily using spectral indexes, such 
as the NDVI. Such indexes, when coupled with a 
time-series of measurements, provide important 
information about the phenology and dynamics 
of vegetation communities (Taddeo and Dronova 
2019; Dronova et al. 2021) and are used to infer or 
model biomass and primary productivity (Byrd 
et al. 2014; Byrd et al. 2018), as described in other 
papers in this special issue. 

The number of spectral bands, their width, and 
their position vary across sensors (Figure 6), 
which can greatly influence the comparability 
of spectral indexes across data sets—uncertainty 

Figure 6 A comparison of spectral band widths and positions. Hyperspectral sensors, such as AVIRIS, PRISM and HyTES, provide many narrow 
measurements for contiguous coverage across a range of the electromagnetic spectrum. Source: Jacob Nesslage, UC Merced.
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that is difficult to quantify because there is no 
direct validation available for a spectral index 
(Huang et al. 2021). This uncertainty is further 
compounded by differences in spatial resolution 
across sensors, which means the footprint is 
not the same between images taken over the 
same geographic region. For example, a recent 
study showed that the NDVI calculated from five 
different airborne and satellite sensors over the 
same study area varied from 0.4 to 0.9 (on a scale 
of -1 to 1) (Huang et al. 2021). In the Sacramento–
San Joaquin Delta, Dronova et al. (2021) compared 
phenology metrics (start of greening, end of 
greening, etc.) derived from a spectral index 
from two sensors: Landsat and a high-spatial-
resolution commercial satellite. They found that 
phenological metrics varied by 10 to 79 days, and 
the agreement between different satellite inputs 
was non-systematic. 

Fortunately, harmonization between different 
sensor data sets is advancing, leading to seamless 
image products that provide a unified data set 
with a denser time-series (Claverie et al. 2018). 
Once such harmonized products are widely 
available, it may be possible to have consistent 
measurements across multiple satellite sensors 
that have different spectral resolution. This will 
also result in higher-temporal-resolution data sets 
through the formation of “virtual constellations.” 
For example, combining Landsat 8 and Sentinel-2 
data results in a ~2.9-day revisit frequency. 
Harmonizing the data between Landsat 8 and 
Sentinel-2 has been shown to be successful 
for monitoring terrestrial phenology (Bolton 
et al. 2020) and measuring water-column total 
suspended solids (Pahlevan et al. 2019). However, 
the uncertainties from harmonized products 
have yet to be sufficiently quantified for remote 
sensing of primary producers in the estuary.

Temporal Resolution
As with spatial resolution, temporal resolution 
should be defined by the needs of the application 
but is often limited by the reality of what free 
and open-access data are available. Mapping 
vegetation to track the distribution of changes in 
emergent aquatic vegetation (EAV), FAV, and SAV 
communities and various wetland habitats in the 

estuary may only necessitate an annual time-
step or greater, thus requiring the relatively low 
temporal resolution (but high spatial resolution) 
afforded by commercially contracted aircraft 
and high-spatial-resolution commercial satellites 
(e.g., Chapple and Dronova 2017; Khanna et al. 
2018). However, the timing of data acquisition is 
critical. The best time of year to map species and 
biomass is generally recognized to be during the 
growing season, and optimally when key species 
of interest are showing the greatest phenological 
differences, such as when flowering (Andrew and 
Ustin 2006; Adam et al. 2010; Wan et al. 2019). 

If the application requires quantification in 
the change of primary producers over time, 
particularly to understand changes in production, 
then multiple observations are necessary 
before, during, and after an event. For example, 
quantifying the phenological events of green-up 
and senescence of primary producers typically 
requires temporal resolution on the order of 
6 to 16 days or higher, and the probability of 
error in derived metrics increases by up to 20% 
with greater temporal gaps between sequential 
observations, e.g., because of clouds (Zhang et 
al. 2009). Tracking changes in water-column 
primary producers requires an even higher 
temporal resolution. For example, remote sensing 
of phytoplankton requires a temporal resolution 
on the order of hours to days to capture dynamic 
changes, particularly in tidal systems such as the 
estuary (Mouw et al. 2015; Muller–Karger et al. 
2018). 

High temporal resolution also increases the 
likelihood of collecting data at the “right time” 
for a given application, particularly from satellite 
platforms. For example, wetlands and aquatic 
vegetation are hydrodynamically variable, 
and water influences the spectral signal very 
strongly. Variations in water level can shift the 
red-edge absorption or red-edge reflectance 
features of vegetation (Turpie 2013). Thus, 
water level influences many of the diagnostic 
spectral indexes used to estimate biomass, NPP, 
or vegetation phenological status and health 
(although, this may be overcome with water-
adjusted indexes, e.g., Villa et al. 2014). Variations 
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in water level and water quality can also influence 
the capability to detect SAV, and thus acquiring 
data at low tide is recommended (Hestir et 
al. 2008). High-temporal-resolution data also 
increases the likelihood of collecting cloud-free 
data, a critical consideration when dealing with 
optical remote sensing.

Hestir et al. (2015) provide two definitions of 
temporal resolution for optical remote sensing 
data. The first is the designed resolution 
determined by the platform altitude and orbit 
(e.g., 16 days for Landsat), and the second is the 
effective resolution, which is determined by the 
region’s cloudiness. At the global scale, a satellite 
repeat frequency with a designed resolution of 
16 days (e.g., Landsat) provides at least seasonal 
effective temporal resolution. Given the climate 
conditions of California, there are many cloud-
free days throughout the year, increasing the 
effective temporal resolution for all satellite 
remote-sensing missions in the estuary relative 
to other regions. However, there is a seasonal 
bias in the cloud-free conditions over the region. 
We estimate there are an average of 168.5 days 
(± 15.6 days) each year with low or no cloud 
cover for the estuary. As expected, this statistic 
varies a great deal monthly and interannually, 

particularly during winter (Figure 7). These 
estimates were obtained using the NASA Aqua 
satellite’s Atmospheric Infrared Sounder (AIRS) 
Monthly Standard Physical Retrieval cloud 
cover product. We further calculated that the 
probability of any 1 day in the year having low 
(<10%) or no cloud cover is 58%. This means the 
likelihood of at least monthly cloud-free data 
from a 16-day repeat interval for the estuary is 
higher than the global average (Mercury et al. 
2012), but with strong seasonality that may lead to 
a seasonal bias in data density. However, higher 
temporal frequency can increase the likelihood of 
a cloud-free scene. Thus, the Sentinel-2 satellites, 
with a combined temporal resolution of 5 days 
and the virtual constellation of Sentinel-2 plus 
Landsat (with a combined temporal resolution 
of 2.9 days), provide an appealing opportunity 
for remote sensing of primary producers in 
the estuary. Another solution is active sensing 
technology, such as light detection and ranging 
(LiDAR) and synthetic aperture radar (SAR), 
which do not depend on reflected sunlight for the 
measurement, and can thus be used under cloudy 
conditions, or even at night. 

Radiometric Resolution and Sensor Fidelity
Radiometric resolution—the signal-to-noise ratio 
of the sensor—and the radiometric dynamic range 
are critical resolution requirements for remote 
sensing of water-column primary producers. 
This is because water very effectively absorbs 
electromagnetic radiation: very little signal 
returns to the sensor. Thus, the sensitivity of the 
sensor can affect the accuracy of water-column 
chlorophyll-a estimates, a key component of 
the primary production in aquatic systems. 
This can be accounted for by spatial or spectral 
binning (Giardino et al. 2007; Vanhellemont 
and Ruddick 2014), which presents another 
trade-off consideration for aquatic applications. 
Higher-spatial-resolution sensors capable of 
imaging the waterways of the estuary (e.g., 
Landsat, Sentinel-2, Airborne Visible/Infrared 
Imaging Spectrometer Classic [AVIRIS-c]) are 
designed for terrestrial applications. This means 
they do not have the radiometric resolution 
or sensitivity to discriminate between low 
concentrations of chlorophyll-a typically found 

Figure 7 The number of low or no-cloud cover days (<10% fractional 
cover) by month from 2003 to 2017 for the San Francisco Bay and 
Sacramento–San Joaquin Delta, calculated via the NASA Aqua satellite’s 
Atmospheric Infrared Sounder (AIRS) Monthly Standard Physical Retrieval 
cloud cover product
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in the estuary and optically confounding 
water-column constituents such as suspended 
solids and dissolved organic matter. However, 
next-generation sensors—including Landsat 8, 
Landsat 9, and new hyperspectral airborne and 
satellite instruments—have the spatial, spectral, 
and radiometric resolution and sensitivity suited 
to accurately retrieve water-column primary 
producers (Giardino et al. 2019). 

Other Remote Sensing Modalities
While most remote-sensing data used in the 
estuary is passive optical remote sensing, active 
instruments such as (LiDAR) and (SAR) have 
been useful for remote sensing of primary 
producers. LiDAR—most often mounted on 
aircraft, but also increasingly on UAV—can 
characterize the 3-dimensional (3-D) structure of 
the vegetation canopy as well as the topography 
of the underlying surface. Canopy structure and 
microtopography have been used to discriminate 
salt-marsh species and invasive wetland species 
(Rosso et al. 2006; Andrew and Ustin 2008), 
identify wetland ecotones and controls on invasive 
species phenology (Andrew and Ustin 2009a), 
and model potential species invasions (Andrew 
and Ustin 2009b). However, the density of salt-
marsh vegetation limits the laser penetration 
of the canopy and thus introduces uncertainty 
in wetland digital elevation models (Rosso et al. 
2006). In contrast with the discrete laser pulses of 
most commercially deployed LiDAR systems, full 
waveform LiDAR records the entire backscattered 
signal from the laser pulse, thus providing more 
information on salt-marsh vegetation structure 
and density (Rogers et al. 2015) and potentially 
more accurate estimates of surface elevation 
(Rogers et al. 2018). However, full-waveform 
LiDAR data acquisitions have not yet been 
conducted in the estuary to our knowledge. 

SAR, mounted on both airborne and spaceborne 
platforms, measures backscattered microwave 
radiation sideways along a flightpath. Because 
of its ability to penetrate canopies, SAR has been 
used extensively around the world to detect and 
map forested wetlands (Henderson and Lewis 
2008) and to monitor the extent of surface water 
and wetland inundation (Brisco 2015). In the 

Delta, it has been used to improve the mapping 
of crops and rice paddies (Torbick et al. 2011; 
H Li et al. 2019) and to assess flood embankments 
(Wood et al. 2018), levee stability, and subsidence 
(Bekaert et al. 2019), but it has not yet been used 
extensively to map or model primary producers.

Measuring Change through Time
One of the most desirable aspects of remote 
sensing to study primary producers is the 
capability to make repeated, systematic 
measurements over time. This enables us to study 
ecological succession and invasion, primary 
producer responses to stressors or management 
treatments, and the effects of seasonality, 
weather, and climate on primary production. 
For example, the near-annual acquisition of 
airborne hyperspectral remote sensing has 
resulted in time-series maps of FAV and SAV. 
However, such a program is costly, and there is 
no dedicated monitoring program for aquatic 
vegetation in the Delta. Indeed, there was a 6-year 
gap in monitoring the Delta (2009 to 2013), and 
monitoring from 2016 to 2020 was curtailed to the 
northwest and central Delta because of limited 
funding. Yet the multi-user community recognizes 
the value in such a program, and there have 
been multiple calls for a consistent monitoring 
program using hyperspectral data (Boyer and 
Sutula 2015; Ta et al. 2017).

The most notable archival data set to study 
change through time is the Landsat series of 
satellite sensors, with Landsat 1 dating back to 
1972. While Landsat data have been available to 
the scientific and management community since 
then, costs varied between $200 and $4,000 per 
scene, placing long-term time-series analysis out 
of reach for most (Wulder et al. 2012). The free 
and open-access Landsat data policy enacted 
in 2008 resulted in an explosion of users and 
applications, skyrocketing from ~1 million image 
downloads in 2009—the first year of the new 
policy—to 20 million in 2017 (Zhu et al. 2019). 
The Landsat data policy has since prompted 
similar policies around the world, such as free 
and open-access data from the ESA Copernicus 
program (i.e., Sentinel satellite data). It has also 
led to the development of third-party platforms 
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Table 1 Major satellite and selected aerial remote sensing systems applicable to the estuary. See Ustin and Middleton (2021) for a thorough discussion of 
the many satellite instruments of broad interest to ecological and environmental applications. 

Type Sensor or mission Agency Frequency Temporal scope Spatial resolution
Spectral sensitivity or  

related features

Passive 
(optical and 
thermal)

MODIS on Aqua and 
Terra satellites NASA Twice daily per 

sensor 2000–present 250–1000 m Visible, near-infrared, and 
shortwave-infrared, thermal Landsat satellites NASA 8–16 days 1972–present 30–120 m

ASTER (Terra satellite) NASA 16 days 2000–present

Sentinel-2 ESA 5 days between 
2 sensors 2015–present 10–30 m Visible, near-infrared, and 

shortwave-infrared
SPOT ESA ~26 days 1986–present 1.5–20 m
NAIP (National 
Agriculture Imagery 
Program, aerial)

USDA Every 2–3 years Since 2005 in 
California 0.6–1 m Visible and near-infrared

PlanetScope satellites PlanetLabs ~Daily 2015–present 3 m Visible and near-infrared

RapidEye PlanetLabs 1-6 days 2008–present 5 m Visible and near-infrared, 
red edge

Commercial high 
resolution (e.g., IKONOS, 
Pleiades, WorldView, 
QuickBird)

Maxar Variable;  
3–140 days Since ~2001 ≤4 m

Often visible and near-
infrared; additional visible 
and red-edge sensitivity 
in some (WorldView-2, 
WorldView-3, WorldView-4)

PRISMA Italian Space 
Agency (ASI) 7–14 days 2019–present 30 m

Hyperspectral

DESIS
German 
Space Agency 
(DLR)

3–5 days 2018–present 30 m

HISUI Japan Space 
Agency 2–60 days 2019–present 20–30 m

AVIRIS (aerial) NASA Custom (tasked) Since 2007 in 
the estuary

3–20 m in past 
data sets 

HyMap HyVista Custom (tasked) Since 2004 in 
the estuary 1.7–3 m 

Hyperspectral Imager 
for the Coastal Ocean 
(HICO)

NASA Custom (tasked) 2009–2014 90 m

OCO-3 NASA Daily 2019–present ≤4,000 m Near-infrared and 
shortwave-infrared

ECOSTRESS NASA 1–7 days 2018–present 70 m Thermal infrared

Active radar

ENVISAT ASAR ESA 35 days 2002–2012
30–150 m 
for regional 
applications Some of the SAR 

instruments collect data 
in different microwave 
spectra, view angles 
and polarizations, which 
increases the data 
information content

RADARSAT satellites 
program (commercial)

Canadian 
Space Agency

4–24 days 
depending 
on mission

1995–present 10-100 m

Sentinel-1 ESA 6–12 days 2014–present
5-40 m 
depending on 
product

UAVSAR NASA Custom (tasked) Since 2007 ~6 m

Active 
LiDAR

GEDI (satellite) NASA Variable, 
location-specific 2018–present

25-1,000 m 
depending on 
product and 
location

Full-waveform LiDAR

Aerial LiDAR Various Custom
Different regions 
of the estuary 
since ~2003

Variable
Discrete-return (point 
cloud) LiDAR in most 
regional applications
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such as Google Earth Engine and the Australian 
Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) Open Data Cube Project, 
which provide petabytes of data and cloud-
based computing platforms accessible through 
application programming interfaces to enable 
analyses across its entire archive. These platforms 
along with the long-term archival capabilities of 
Landsat now enable decadal-scale analyses of 
vegetation dynamics and management actions in 
the Delta (Taddeo and Dronova 2020).

REMOTE SENSING OF PRIMARY PRODUCERS TO MEET 
MANAGEMENT NEEDS
Mapping and Measuring Primary Producers
The mapping needs for primary producers in the 
estuary are primarily driven by management 
needs for baseline assessment and monitoring, 
tracking invasions, and monitoring and evaluating 
restoration. While some applications require very 
high spatial and spectral detail, such as mapping 
primary producers at a high level of taxonomic or 
functional detail (e.g., 5-m pixel resolution or less), 
plant cover or habitat distribution may be mapped 
at a variety of high to moderate spatial resolutions 
(10 to 30 m). While high-accuracy maps can often 
be made using a snapshot single-date observation, 
multi-temporal imagery is highly desirable for 
tracking change through time. Various studies in 
other regions have successfully exploited multi-
temporal satellite remote sensing to achieve 
higher classification accuracy, particularly when 
phenological signals vary between classes (Bolch 
et al. 2020). It has been suggested that such an 
approach may be useful in the Delta (Hestir et 
al. 2008). However, this may have limited utility 
for mapping highly motile species such as FAV 
and may confound change detection because of 
variability between growing seasons (Tuxen et al. 
2011).

Primary producers are usually mapped using 
classification techniques that may be manual, 
automated, or a combination of both. For example, 
California VegCAMP maps are often made through 
manual digitization and image segmentation 
of high-spatial-resolution NAIP aerial imagery, 
supported by reference information about 

vegetation from rigorous field surveys (CDFW 
2020). Other remote-sensing mapping techniques 
are more automated and use supervised 
classification techniques that require user input 
to define classes and training data for subsequent 
classification (Hestir et al. 2008; Khanna et al. 
2011; Tuxen et al. 2011; Santos et al. 2016). When 
data have high spatial resolution but poor spectral 
resolution (e.g., aerial photography, UAV imagery, 
and some commercial high-spatial-resolution 
satellite data), object-based image analysis 
or texture metrics may be used to improve 
classification performance. Texture metrics in 
image analysis summarize tonal variability in an 
image from canopy heterogeneity and shadowing 
(Franklin et al. 2001). Object-based image analysis 
is a mapping workflow which first groups 
pixels into local regions (“objects”) and then 
classifies such regions to recover larger patches 
of vegetation and other surface types (Hossain 
and Chen 2019). Both texture metrics and object-
based image analysis have been used to improve 
classification mapping of the estuary (Tuxen 
and Kelly 2008; Dronova et al. 2012; Moffett and 
Gorelick 2013; Chapple and Dronova 2017; Bolch 
et al. 2021). Finally, advanced machine learning 
techniques—such as classification and regression 
trees, random forests, support vector machines 
and neural networks—have shown considerable 
promise in recent years to improve recognition of 
landscape types from remote-sensing data. These 
techniques enable rapid and more automated 
approaches for high-accuracy mapping of aquatic 
vegetation functional types and species, and for 
modeling salt marsh vegetation aboveground 
biomass (Hestir et al. 2012; Byrd et al. 2018; Bolch 
et al. 2021). 

Detecting and measuring primary producers 
often relies on the earlier mentioned spectral 
vegetation indices (SVIs) as biophysical indicators 
of primary producer pigments, structure, 
biomass or coverage, and canopy water content. 
SVIs are mathematical combinations of passive 
spectral reflectance signals from narrowband 
(hyperspectral) or broadband (multispectral) 
data. By design, SVIs prioritize portions of the 
electromagnetic spectrum that indicate plant 
function, such as the unique, vegetation-specific 
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utilization of solar radiation (Gitelson et al. 
2006; Ustin and Gamon 2010; Ollinger 2011). 
For example, the popular NDVI capitalizes on 
the difference between the red region with 
strong photosynthetic absorption driven by leaf 
pigments and the near-infrared region with 
strong reflectance driven by plant cell structure 
(Rouse et al. 1974). Another popular SVI, the 
Enhanced Vegetation Index (EVI), incorporates 
reflectance in a shorter-wavelength blue 
region, which accounts for atmospheric aerosol 
effects (Huete et al. 2002). EVI is particularly 
beneficial in landscapes where signals from 
longer wavelengths saturate, such as closed-
canopy forests and some aquatic and wetland 
environments (Knox et al. 2017; Taddeo et al. 
2019). Temporal variability in SVIs provides 
important insights into the phenological dynamics 
of primary producers that shape the seasonality 
of different ecosystem functions (Matthes et 
al. 2015; Eichelmann et al. 2018; Dronova et al. 
2021). Besides being useful as measurement 
proxies for the biophysical conditions of plants, 
SVIs are often used as inputs into multivariate 
classification schemes to map primary producers. 

Data-fusion approaches that combine different 
remote-sensing data types also present an 
opportunity to improve mapping by providing 
more or additional information that spans 
different regions of the spectrum, incorporates 
active and passive techniques, or encompasses 
multiple resolutions. Hyperspectral remote 
sensing combined with LiDAR provides both the 
spectral information and structural information 
to accurately map Salicornia and invasive Lepidium 
latifolium (Rosso et al. 2006; Andrew and Ustin 
2008). Multispectral data combined with LiDAR 
have also been used to improve digital elevation 
models (Buffington et al. 2016). However, given 
the vegetation zonation and organization of many 
tidal marshes, such data fusion is not always 
necessary (Moffett and Gorelick 2013). 

The Water Column

Within the Water Column
Primary production by phytoplankton represents 
one of the most important sources of carbon flux 

in the world, and forms the base of the aquatic 
food web. Satellite remote sensing of chlorophyll-a 
has long been used as a basis to model net 
primary production; recent advances in sensor 
spectral and radiometric resolution as well as 
algorithm advances have led to our ability to map 
and monitor phytoplankton functional groups and 
track potentially harmful algal blooms (Bracher 
et al. 2017). However, there are very few studies of 
remote sensing of water-column chlorophyll-a or 
phytoplankton functional groups in the estuary. 

Detecting chlorophyll-a in coastal and inland 
waters is complicated by several factors. Only 
about 10% of the radiance measured at the top 
of the atmosphere is from the water signal; the 
remainder is from scattering in the atmosphere 
and reflections from the sun and sky. Thus, 
an important initial data-processing step is 
removing the effect of atmospheric gasses and 
particles from the water-leaving signal, a step 
more challenging in inland and coastal waters 
than for open ocean waters (Moses et al. 2017). 
Another major issue is the optical complexity 
of the water column, in which colored dissolved 
organic matter and total suspended solids 
confound traditional algorithm approaches 
for mapping chlorophyll-a and solar-induced 
fluorescence (Gilerson et al. 2007; Muller–Karger 
et al. 2018). Palacios et al. (2015) demonstrated 
that phytoplankton functional types can be 
mapped using airborne imaging spectroscopy in 
the nearby Monterey Bay, although atmospheric 
correction and sensor sensitivity were large 
sources of error in that study. Current satellite 
remote-sensing systems that have the spectral 
and radiometric resolution as well as the sensor 
fidelity necessary to detect phytoplankton 
pigment are not suited for coastal and inland 
waters because of limitations in spatial resolution. 
Mouw et al. (2015) provide a recent overview of 
these challenges for remote sensing of optically 
complex waters, and Diersssen et al. (2021) 
provide a complement to this review with a focus 
on hyperspectral remote sensing. 

Another challenge for the estuary is the relatively 
low amount of chlorophyll-a in the water column, 
which affects retrieval accuracy. Hoogenboom 
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et al. (1998) used simulations with the AVIRIS 
hyperspectral instrument to show that the 
accuracy of chlorophyll-a retrieval greatly 
depends on the concentration of chlorophyll-a in 
the water column, and that this accuracy varies 
as a function of instrument sensitivity (from 10% 
error for concentrations greater than 12 mg m-3 to 
33% error for concentrations of 2 mg m-3). Given 
the typically low concentrations of chlorophyll-a 
in much of the estuary, the capability to detect 
chlorophyll-a or other phytoplankton pigments 
at low concentrations is especially challenging. 
Fichot et al. (2016) overcame this limitation 
using the airborne Portable Remote Imaging 
Spectrometer (PRISM) imaging spectrometer, 
a hyperspectral system designed with high 
radiometric resolution for aquatic applications. 
Their chlorophyll-a retrievals were within ±13% 
to 18% of chlorophyll-a proxy measurement made 
with an in situ optical instrument, and within 
±60% of actual chlorophyll-a concentrations. 
However, they also made the point that this 
does not prevent the detection of phytoplankton 
blooms when chlorophyll-a concentrations are 
increased several-fold, and ultimately concluded 
that remote sensing could be used to support 
water-quality monitoring and management 
in the estuary. Subsequently, satellite remote 
sensing has been used to support water- quality 
monitoring to inform management decisions 
about water operations and to assess short and 
long-term trends in fish habitat suitability (Ade et 
al. 2021; Gustine et al. 2021; Halverson et al. 2021; 
Lee et al. 2021), but only for turbidity and surface 
temperature.

Above and Below the Water Column
Remote sensing for invasive SAV and FAV 
has been significantly advanced by airborne 
hyperspectral campaigns flown nearly annually 
at low-tide conditions. In 2003, the Division 
of Boating and Waterways (DBW) funded the 
Center for Spatial Technologies and Remote 
Sensing (CSTARS) at UC Davis to implement a 
pilot project that mapped IAV in the Delta using 
airborne imaging spectroscopy (Underwood et 
al. 2003). After the success of the pilot project, 
the DBW provided funding for another 5 years, 
2004 to 2008, to map plant communities across 

the legal Delta every summer. This was started 
again in 2014 and has continued through 2021, 
using funds from NASA, the CDFW (California 
Department of Fish and Wildlife), the CDWR 
(California Department of Water Resources), and 
the DSC (Delta Stewardship Council). The data 
are acquired on low-altitude aircraft, enabling 
high-spatial-resolution (1.7- to 3-m pixel size) 
mapping of FAV to the genus/species level, and 
SAV to the functional-type level (Hestir et al. 2008; 
Khanna et al. 2011; Hestir et al. 2012; Khanna et 
al. 2012, 2018). Santos et al. (2012) demonstrated 
that it was possible to discriminate invasive 
from native growth forms of SAV using spectral 
data, and applied such techniques to image data, 
but this has not been extensively mapped for 
the Delta because of the heterogenous mixtures 
of invasive and native species and a lack of 
species-level field data sufficient for extensive 
calibration and validation. Maps of FAV and SAV 
have underpinned critical invasion studies in the 
Delta, including the effectiveness of herbicide 
management and drought barriers (Santos et 
al. 2009; Khanna 2010; Kimmerer et al. 2019), 
ecological drivers and implications of biological 
invasions (Khanna et al. 2012; Santos et al. 2012; 
Santos et al. 2016; Khanna et al. 2018), and their 
effect on water quality and physical habitat 
(Hestir et al. 2016; Khanna et al. 2018).

Recent advances in platform and sensor 
technology are eliciting new possibilities for 
multi-scale mapping of FAV to the genus/species 
level in the Delta. The ESA’s recent launch of 
the Sentinel-2 satellites provide multispectral 
data at 20-m spatial resolution every 5 days. 
Ade et al. (2022) recently demonstrated that 
machine learning can be used to discriminate 
water hyacinth and water primrose using 
Sentinel-2 data with comparable accuracy to 
airborne hyperspectral data, but with the loss 
of small patch detection. UAVs and miniaturized 
imaging spectrometers are leading to centimeter-
scale mapping capabilities for targeted area 
applications. Bolch at el. (2021) used machine 
learning for UAV-mounted hyperspectral remote 
sensing to discriminate to the species/genus level 
of water hyacinth and water primrose with high 
accuracy. However, the utility of UAV to detect IAV 
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will not be in system-wide monitoring; because 
of the small footprint of UAV platforms, it would 
take over 7,000 hours of flight time to cover the 
entire area of the legal Delta (Bolch et al. 2021). 

Wetlands and Marshes
Remote sensing has long been used to map the 
wetlands and marshes in the estuary (Zhang 
et al. 1997). These maps have been useful in 
assessing post-restoration recovery and vegetation 
colonization. Many applications of remote sensing 
for wetland restoration have highlighted the 
importance of regular remote-sensing monitoring. 
Such monitoring has enabled researchers to 
track the dynamics of premature senescence and 
variable colonization rates that may be obscured 
in regular field-based approaches (Tuxen et 
al. 2008). Remote sensing has also enabled 
researchers to quantify the effect of drought on 
vegetation development at a South Bay Salt Pond 
restoration site (Chapple and Dronova 2017). With 
the long-term archival capabilities of the Landsat 
sensor, spatial variability in wetland change 
can be quantified over time, which has led to 
an improved understanding of the importance 
of local context and fluctuations in the abiotic 
environment as factors in determining restoration 
outcomes (Taddeo and Dronova 2019). 

In wetland and marsh ecosystems, most 
primary producers are also foundation species, 
meaning they provide critical habitat and 
serve as important drivers in the trophic web. 
Remote sensing of primary producers can thus 
also be used to assess the habitat potential and 
suitability of important species. Remotely sensed 
maps of marsh vegetation, canopy height, and 
geomorphology have been used to model avian 
habitat use and potential (Seavy et al. 2009; 
Stralberg et al. 2010). Such applications also 
extend to the water column. For example, LiDAR 
data have been used to quantify the effect of 
riparian tree shade on Delta surface waters, and 
to identify potential thermal refugia for spawning 
fish (Greenberg et al. 2012); and SAV maps from 
airborne hyperspectral remote sensing have 
been used to design a survey to investigate 
the association between SAV biomass and 
Largemouth Bass in the Delta (Conrad et al. 2016). 

MODELING PRIMARY PRODUCTIVITY 
Remote-sensing assessments of primary 
producers support regional ecological modeling 
efforts in two important ways: (1) using maps—
the spatial extent and distribution of ecosystem 
components with thematic categories as different 
ecosystem functions (e.g., maps of vegetation 
types) and (2) using measurements—i.e., remote 
sensing-derived biophysical indicators of 
ecosystem properties and functions that primary 
producers control. Thematic maps that represent 
specific plant communities and crop types are 
often used to up-scale ecosystem functions 
such as primary productivity or greenhouse 
gas sequestration from discrete field data. The 
basic approach associates map categories with 
functional properties that are often assumed 
to be constant within such categories. For 
example, field-based chamber measurements of 
greenhouse gas emissions from wetlands can be 
used in concert with very-high-spatial-resolution 
(~15 cm) maps of vegetation and open water to 
greenhouse gas budgets across large, restored 
wetland sites (McNicol et al. 2017). Baldocchi 
et al. (2016) used multi-year maps of expanding 
rice paddies on Twitchell Island produced by 
30-m Landsat satellite imagery to model changes 
in evapotranspiration. At a broader regional 
scale, Landsat and MODIS satellite products 
have been used to model evapotranspiration at 
scales relevant to the dynamics of Delta land uses 
(Anderson et al 2018). 

Remote sensing-derived biophysical indicators 
can be used to model some ecosystem-level 
variables, such as biogeochemical fluxes and 
gross and net primary productivity (GPP and 
NPP, respectively). Biophysical indicators derived 
from SVIs are often used to empirically model 
ecosystem-level primary productivity and other 
ecosystem functions. Not surprisingly, SVIs 
have shown strong empirical correlations with 
wetland vegetation biomass (Byrd et al. 2014), 
canopy leaf area index (Dronova and Taddeo 
2016), and indicators of GPP and net ecosystem 
exchange (NEE) for CO2 (Matthes et al. 2015; 
Knox et al. 2017) among others. Additionally, the 
3-D structure and biomass of vegetation can be 
directly measured with active remote-sensing 
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tools, such as LiDAR (Rosso et al. 2006) and high-
resolution radar (H Li et al. 2019; Duncanson et al. 
2020). However, the use of active remote sensing 
to directly measure biomass and model radiative 
transfer and primary productivity has been 
limited to date based on availability and the high 
costs of acquiring such data.

Remote Sensing-Based Modeling of Primary Producer 
Biomass and Ecological Functions

The Water Column
To date, regional applications of remote 
sensing for modeling primary producers have 
predominantly emphasized above-ground 
vegetation (mainly EAV) and ecosystem-wide 
assessments (Table 2). In contrast, primary 
productivity modeling of water column, mudflat, 
and below-water environments have been scarce, 
despite their advances in other estuaries and 
marine settings, including other California 
estuaries (Paterson et al. 1998; Zimmerman 2003; 
Méléder et al. 2020). Examples of relevant aquatic 
applications stop at mapping and may extend to 
studies of water quality (Catts et al. 1985; Fichot et 
al. 2016; Hestir et al. 2016). 

Wetlands and Marshes
Modeling Primary Productivity and Biogeochemical Fluxes. 
Efforts to model primary producer biomass and 
productivity in emergent above-ground (above-
water) and below-ground domains report strong 
empirical relationships between ecological 
variables and remote-sensing indicators from 
a wide array of sensors (Table 1). Notably, such 
applications involve both landscape-scale remote-
sensing observations from satellite and airborne 
platforms and in situ sensing using spectroscopic 
instruments and PhenoCams. Matthes et al. 
(2015) used field spectroscopic measurements to 
compare seasonal dynamics between similarly 
structured, yet phenologically contrasting, 
canopies of a drained pasture and a rice paddy 
in the Delta. They also developed predictive 
models for GPP and NEE based on narrowband 
reflectance in visible and near-infrared regions 
and field ecosystem measurements. The seasonal 
dynamics of GPP and NEE have been also 
modeled in freshwater restored wetlands in the 

Delta using vegetation greenness indices from 
Landsat imagery (Anderson et al. 2016) and with 
phenoCams (Knox et al. 2017). However, Anderson 
et al. (2016) also noted interannual discrepancies 
between NDVI and productivity, attributing them 
to potential confounding effects of variable green 
biomass coverage and background reflectance 
from water, soil, etc., which become inevitable 
because of pixel mixing at 30-m pixel resolution 
(Byrd et al. 2014; Dronova and Taddeo 2016). In 
such efforts, phenology of SVIs gains special 
importance both as an indicator of seasonality 
in primary producer function and as an indirect 
indicator of structural heterogeneity (Dronova et 
al. 2021). 

Increasing spatial resolution of accessible remote-
sensing data sets provides a breakthrough 
in up-scaling of primary productivity 
and biogeochemical budgets from point 
measurements by eddy-covariance stations 
(Baldocchi et al. 2001). These stations are 
equipped with specialized instruments that 
measure atmospheric concentrations of the target 
chemicals at high temporal frequencies along 
with relevant meteorological parameters such as 
atmospheric temperature, solar radiation, soil 
moisture, and others. Atmospheric concentrations 
of chemicals such as greenhouse gases represent 
a particular “footprint” of the contributing 
landscape area—the orientation and size of 
which can vary in time (Anderson et al. 2016; 
Knox et al. 2017)—that historically has required 
eddy-covariance stations to be placed within 
“homogenous” ecosystems. Spatial complexity 
and patchiness of estuarine landscapes creates 
uncertainty in interpreting and budgeting such 
field measurements, since temporal variation 
in measured fluxes becomes a function not 
only of the local photosynthesis and ecosystem 
respiration, but also of changes in the proportions 
of vegetation and other surfaces when the 
footprint shifts. Remote sensing-based maps of 
eddy-covariance footprints solve this problem, 
particularly when produced at sufficiently 
high spatial resolution. Matthes et al. (2014) 
demonstrated this by using different-season 
images of high-spatial-resolution commercial 
satellite data (WorldView-2), which was classified 
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into emergent vegetation, aquatic vegetation, and 
open water to parse annual variability in CH4 
fluxes based on changes in these landscape cover 
types. 

Finally, increasing the temporal resolution of 
remote-sensing data will improve our ability to 
model primary productivity over time. Emerging 
remotely sensed phenological products, such 
as 30-m gridded measures of annual vegetation 
seasonality derived from harmonized Landsat and 
Sentinel-2 satellite data for North America (Bolton 
et al. 2020), are highly promising to streamline 
modeling primary productivity and other 
seasonally variable aspects of ecosystem function 
in the region. However, such products, often 
developed with the focus on upland landscapes, 
require additional testing and calibration for 
estuarine ecosystems.

Modeling Biomass and Carbon Stocks. In addition to 
biogeochemical fluxes, remote-sensing tools have 
also greatly advanced the modeling of vegetation 
biomass and carbon stocks in the challenging 
setting of estuarine emergent wetlands. Field 
spectroscopic measurements have been used 
to develop empirical relationships with above-
ground plant biomass of Delta emergent 
freshwater marshes, and then scaled with three 
types of satellite data with contrasting resolutions 
(Byrd et al. 2014). In a later study, Byrd et al. 
(2018) developed a first-time remote-sensing-
based model of the above-ground carbon stocks 
in tidal marshes for the whole conterminous 
United States, using San Francisco Bay as one of 
the regions for model calibration and relevant 
field sampling. The model was further used to 
generate spatially explicit predictions of tidal 
marsh biomass and percent carbon in tidal marsh 
plant tissue, thus demonstrating an important 
pathway towards cost-effective monitoring of 
coastal wetland blue carbon ecosystems (Byrd et 
al. 2018). Satellite imagery has also been used to 
model above-ground canopy properties relevant 
to photosynthetic functioning, such as proxies 
of canopy leaf area index. For example, Dronova 
and Taddeo (2016) reported a strong positive 
correlation between plant area index measured 
in tidal and impounded Suisun and West Delta 

marshes and Landsat-based NDVI. However, this 
relationship was confounded by mixed pixels 
at the 30-m spatial resolution of satellite data 
and could not easily account for variation in 
canopy height (Dronova and Taddeo 2016). More 
generally, the challenges of mixed pixels and the 
limited sensitivity of passive sensors to canopy 
architecture increase the uncertainty in biomass 
and productivity modeling, and in applying the 
relationships established at well-measured sites to 
other regions.

These challenges highlight the need for more 
comprehensive and spatially explicit regional 
assessments of canopy structure, which can 
especially benefit from active remote-sensing 
tools, such as radar and LiDAR. One of the 
promising tools for regional applications is NASA’s 
synthetic Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR). UAVSAR delivers 
image products at high spatial resolution (varies 
by altitude but <10 m in many applications) and 
high temporal frequency that is pre-processed 
and openly distributed by the agency. Since the 
start of UAVSAR applications in 2008, the data 
have been collected through large parts of the 
state and most of the estuary (https://uavsar.jpl.
nasa.gov), making it possible to systematically 
model and assess change. In a study of seasonal 
crop phenology in a portion of the Sacramento 
Valley within the Delta, H Li et al. (2019) reported 
sensitivity to different biomass stages in UAVSAR 
seasonal variability, which may be useful in 
modeling crop biophysical parameters, as shown 
by similar applications in other regions (e.g., 
Reisi–Gahrouei et al. 2019). Duncanson et al. 
(2020) applied both UAVSAR and airborne LiDAR 
data to model above-ground vegetation biomass 
in Sonoma County, California, including the 
northern portion of San Francisco Bay. The latter 
study reported biomass modeling challenges in 
tall, dense canopies because the signal couldn’t 
penetrate them (Duncanson et al. 2020). An 
earlier LiDAR application by Rosso et al. (2006) 
reported similar challenges in characterizing the 
vegetation structure of tidal marshes in the San 
Francisco Bay because of the density of invasive 
cordgrass (Spartina). Although the latter study did 
not explicitly model biomass, it was able to detect 
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relevant changes in canopy height based on the 
difference in LiDAR-based digital surface models 
in consecutive years. However, overall, the high 
cost of acquiring data via LiDAR and the lack of 
systematic revisits has prevented widespread 
application of this instrumentation in modeling 
and monitoring primary productivity. 

Another promising remote-sensing technology 
for high-spatial-resolution canopy structure 
data is structure-from-motion photogrammetry 
from UAVs. This technique uses overlapping 
images acquired from different perspectives 
to reconstruct a 3-D model of the landscape 
(Westoby et al. 2012). This technology has been 
demonstrated to be more accurate than LiDAR—
comparable to survey-grade GPS (<3 cm)—in 
deriving fine-scale microtopography in tidal salt 
marshes on the New Brunswick coast (Kalacska 
et al. 2017). UAV-based structure from motion has 
also been demonstrated to be able to accurately 
estimate the height of salt marsh vegetation 
in North Carolina (DiGiacomo et al. 2020), and 
emergent macrophytes—including Phragmites, 
Typha, and Scirpus—in a freshwater wetland in 
Beijing (Jing et al. 2017). The latter study then 
successfully used the vegetation height data 
coupled with SVIs calculated from the spectral 
information in the ortho-image to estimate above-
ground biomass. However, to our knowledge, 
applications of this technology have not yet been 
published for the estuary. 

Notable progress has been also made in modeling 
below-ground biomass—an important component 
of primary productivity that is not directly 
visible to remote sensors. O’Connell et al. (2015) 
developed a hybrid modeling approach using 
proxies of foliar N and above-ground biomass 
from Landsat satellite data to predict below-
ground biomass and root-to-shoot ratios for 
wetland species in the low-diversity freshwater 
impounded marshes in the West Delta (O’Connell 
et al. 2015). Inspiring examples of similar 
remote-sensing-based approaches have also been 
developed in other ecosystems, such as forest 
applications that use airborne hyperspectral 
remote-sensing tools (Madritch et al. 2014; 
Madritch et al. 2020), multispectral imagery 

(Wicaksono et al. 2016) and LiDAR (Næsset and 
Gobakken 2008; Kristensen et al. 2015). Enhancing 
below-ground predictions is also becoming 
possible via more precise characteristics of 3-D 
canopy structure derived from the structure-
from-motion UAV data (Lopatin et al. 2019). 
However, systematic protocols for modeling 
below-ground primary productivity based on 
such remote-sensing indicators across the diverse 
mosaic of regional ecosystems are still lacking. 

Other Modeling Applications and Emerging Themes
Remote sensing of primary producers can 
greatly support several other ecological modeling 
initiatives in our region and other estuaries. 
Analyses of wildlife populations require spatially 
comprehensive proxies of habitat components and 
food resources, which often include vegetation. A 
relevant example of this is the modeling of avian 
abundance in northern San Francisco Bay and 
western Delta by Stralberg et al. (2010), which 
required both vegetation maps to identify habitats 
and SVIs as proxies of vegetation productivity 
derived from high-spatial-resolution aerial 
imagery (Stralberg et al. 2010). Importantly, 
habitat-related assessments of primary 
producers often require a high level of spatial 
detail to capture landscape elements related to 
fragmentation, connectivity, or signals of habitat 
change (Takekawa et al. 2012).

Regional efforts to model the effects of sea 
level rise (SLR) on estuarine environments have 
used remote-sensing products to characterize 
elevation; however, calibrating and validating 
such models may also require above- and 
below-ground biomass and productivity for 
dominant plant species, which field sampling has 
historically assessed (Stralberg et al. 2011; Schile 
et al. 2014). Studies from other geographic regions 
show the potential of remote sensing to assist 
in SLR modeling by providing satellite-derived 
proxies of wetland biomass density (Medeiros 
et al. 2015; Alizad et al. 2016); these proxies have 
been used to calibrate and validate or to map long-
term changes in wetland types and land uses. 
(Wu et al. 2017). To produce robust and accurate 
outcomes, however, remote-sensing-based inputs 
to modeling SLR may need to reflect a high 
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level of ecological detail, i.e., identities of plant 
communities and their respective biophysical 
parameters. 

Finally, there is a growing interest in remote-
sensing-based indicators of biodiversity and 
particularly plant diversity (Pettorelli et al. 
2016), which in earlier experimental field studies 
have shown strong positive relationships with 
vegetation biomass, primary productivity, and 
stability in the face of stressors (Schweiger et 
al. 2018). Although estuaries and other wetlands 
have been substantially under-studied in 
this regard compared to upland ecosystems, 
emerging evidence suggests the potential 
value of spectral and phenological remotely-
sensed indicators of wetland plant diversity 
(Taddeo et al. 2019; Taddeo et al. 2021). Such 
indicators could also be of interest to monitoring 
programs that are expanding and seeking ways 
to detect early signals of biodiversity shifts in 
wetland restoration sites as well as in historical 
benchmark and reference ecosystems (WRMP 
2020).

Data Quality Considerations
Integrating remote-sensing data sets into 
the modeling of primary-producer functions 
requires particular attention to data quality: 
both accurate mapping and reliable biophysical 
spectral indicators. For example, maps need 
to report how accurately they represent their 
categories, and, ideally, control for error when 
repeated over different time-steps. To minimize 
the effects of confounding factors such as 
variations in atmospheric conditions and sun 
angle, sophisticated atmospheric correction, 
image normalization, and other image pre-
processing steps must be rigorous if SVIs are used 
as empirical biophysical indicators of ecosystem 
function (Samanta et al. 2010; Morton et al. 
2014; Bi et al. 2016). Substantial field surveys are 

always necessary to support the development of 
remote-sensing-based tools (Oikawa et al. 2017; 
Byrd et al. 2018; Dronova et al. 2021). However, 
field observations used to develop, calibrate, 
or validate the model need to be robust, and 
to statistically represent the target ecological 
characteristics. 

Unaddressed errors and uncertainties are likely 
to propagate within modeling workflows, which 
can seriously impede long-term monitoring 
and change assessments. Furthermore, explicit 
assessments of resolution sensitivity and 
resolution-related uncertainty in modeling 
outcomes are extremely uncommon, presenting 
an important research need, given the growing 
variety of data products.

LOOKING AHEAD: THE VERY NEAR FUTURE OF REMOTE 
SENSING OF PRIMARY PRODUCERS IN THE ESTUARY
A Deluge of New Remote-Sensing Data

Orbital Hyperspectral Missions
Several recently launched (2018–2021) satellite-
based remote instruments offer opportunities 
to advance the science and applications of 
primary productivity and should be more actively 
integrated in future monitoring and modeling. 
These include hyperspectral systems—EMIT 
(NASA), PRISMA (Italy), DESIS (Germany) and 
HISUI (Japan)—that provide repeated observations 
of high-spectral-resolution narrowband data 
relevant to detecting photosynthetic activity, 
plant stress, and primary production in the water 
column. Although the spatial resolution of orbital 
hyperspectral missions (~20 to 30 m, comparable 
to Landsat) can be considered somewhat coarse 
for mapping complex estuarine boundaries, the 
high spectral resolution could allow sub-pixel 
fractional estimations of different components—
potentially at the species level—with existing 
well-established methodology (Li et al. 2005; 
Rosso et al. 2005; Hestir et al. 2008; Zomer et al. 
2009; Ustin and Middleton 2021). Since the demise 
of NASA’s Earth Observing Hyperion (EO-1) 
instrument, such capacity has been only available 
predominantly by expensive aerial imaging, and 
these new satellite sensors offer a breakthrough. 
Missions soon to be launched include the 
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Table 2 Select studies of remote sensing of primary producers in the San Francisco Estuary 

Primary objective Application focus Data source Study

Inventories and mapping 
of primary producers

Mapping aquatic vegetation
Airborne hyperspectral (HyMap) 
Airborne LiDAR Khanna et al. 2011

Hestir et al. 2012

Mapping wetland vegetation

Airborne hyperspectral (AVIRIS)
Li et al. 2005
Rosso et al. 2005
Zomer et al. 2009

Multispectral satellite or aerial 
imaging

Zhang et al. 1997 
Tuxen et al. 2008 
Chapple and Dronova 2017

Chlorophyll-a as indicator of water quality Airborne hyperspectral (PRISM)
In situ (optical sensors)

Fichot et al. 2016

Invasive plant species: detection, mapping, 
monitoring change and invasion processes

Airborne hyperspectral 

Underwood et al. 2003
Hestir et al. 2008
Khanna et al. 2012
Santos et al. 2016
Khanna et al. 2018

UAV hyperspectral Bolch et al. 2021
Airborne hyperspectral 
Airborne LiDAR Andrew and Ustin 2008

Airborne 
In situ (Spectroscopy)

Andrew and Ustin 2006
Santos et al. 2012

Airborne LiDAR Rosso et al. 2006

Modeling biomass and 
structure of vegetation

Above-ground biomass (vegetation)

Satellite (Landsat)
In situ (Spectroscopy) Zhang et al. 1997

Satellite (EO-1 Hyperion, Landsat, 
WorldView-2)
In situ (Spectroscopy)

Byrd et al. 2014

Satellite (Landsat) and
Airborne (NAIP) Byrd et al. 2018

Airborne active sensors (UAVSAR, 
LiDAR)

H Li et al. 2019 
Duncanson et al. 2020

Below-ground biomass (vegetation) Satellite (Landsat)
In situ (Spectroscopy) O’Connell et al. 2015

Biomass of chlorophyll-a in water bodies Aerial multispectral (Daedalus) Catts et al. 1985

Wetland canopy leaf area index 
Satellite (Landsat) Dronova and Taddeo 2016
In situ (PhenoCam) Oikawa et al. 2017

Modeling primary 
productivity and carbon 
fluxes

Modeling vegetation-controlled gross 
primary productivity (GPP) and net 
ecosystem exchange for CO2 (NEE)

In situ (Spectroscopy) Matthes et al. 2015

Parsing vegetation and water contributions 
to CH4 fluxes Satellite (WorldView-2) Matthes et al. 2014 

Knox et al. 2017

Predicting GPP in wetlands Satellite (Landsat)
In situ (PhenoCam) Knox et al. 2017

Modeling properties of 
physical environment 
affecting primary 
production and influence 
of primary producers on 
the environment

Riparian ecosystem radiative transfer, 
shading, and water temperature Airborne LiDAR Greenberg et al. 2012

The effects of landscape composition 
and vegetation types on phenology and 
ecosystem function 

Satellite (Landsat, MODIS)
Airborne hyperspectral

Andrew and Ustin 2009a
Baldocchi et al. 2016
Anderson et al. 2018

Habitat suitability of invasive wetland and 
riparian weeds Airborne hyperspectral Andrew and Ustin 2009b

The effects of SAV on water column 
turbidity

Airborne hyperspectral
In situ (Environmental Monitoring 
Program)

Hestir et al. 2016

Phenology of primary 
production

Seasonality of ecosystem function in 
restored wetlands

Satellite (Landsat, PlanetLabs)
In situ (PhenoCam) Dronova et al. 2021
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German Aerospace Center EnMAP hyperspectral 
instrument, NASA’s Surface Biology and Geology 
Mission, and the ESA’s CHIME mission, which 
will—when coupled in a virtual constellation—
provide 30-m hyperspectral data every 5 to 16 
days, creating a Landsat-like data stream but with 
hyperspectral capabilities (Ustin and Middleton 
2021). 

Orbital Thermal Missions
Another highly relevant sensor is NASA’s 
ECOSTRESS. Launched in 2018, ECOSTRESS 
offers thermal products that represent 
evapotranspiration, vegetation stress indicators, 
and land and water surface temperatures at 
an unprecedented spatial resolution of 30 to 
70 m. Because the instrument is on board the 
International Space Station, the time of day the 
instrument passes over a specific site varies. 
Data collected over time enable characterization 
of the diurnal variability in surface temperature 
and derived estimates. Such data sets are 
critical for understanding local precursors of 
primary producer metabolism, which cannot be 
provided by thematic maps or simple greenness 
indices alone (Fisher et al. 2020). Recently, 
Halverson et al. (2021) and Gustine et al. (2021) 
demonstrated good performance of both Landsat 
and ECOSTRESS for measuring surface water 
temperature, with reasonable correlation to 
bulk temperature in the Delta, an important 
first step in advancing primary production 
modeling supported by remote sensing. In the 
context of our estuary, ECOSTRESS products also 
have promise in helping resolve uncertainties 
in characterizing vegetation biomass and 
productivity under variable tidal flooding, which 
could be manifested in thermal signatures of 
inundated communities.

Orbital LiDAR
Space-based LiDAR provides the hope of 
delivering critical missing puzzle pieces on 
productivity by systematically measuring 
ecosystem structure and biomass. The Global 
Ecosystem Dynamics Investigation (GEDI) mission 
launched at the end of 2018 for a 2-year global 
acquisition. The current design of this observation 
system is ill-suited for estuaries because it collects 

data along small, spatially discrete footprints, 
and the continuous aggregated products have 
relatively coarse spatial resolution (25 m to 1 km). 
However, given the high demand for LiDAR 
products in assessments of vegetation canopy 
and topography (Buffington et al. 2016), this 
system provides an important relevant precedent 
for future satellite LiDAR missions and local 
applications of LiDAR on UAVs.

Wetland Hydrology
Hydrology is one of the primary determinants 
of wetland primary productivity. In 2023, NASA 
will launch NISAR, the NASA–Indian Space 
Research Organisation (ISRO) Synthetic Aperture 
Radar (SAR) mission. This will enable inundation 
mapping four to six times per month at a spatial 
resolution of 10 m, and highly precise water-level 
changes (~1 cm) every 6 days (Stavros et al. 2019). 
The capability to characterize hydrological fluxes 
in wetlands could enable improved modeling 
and monitoring of wetland primary productivity. 
Indeed, the recent launch of ESA’s Sentinel-1 
SAR mission has already demonstrated the value 
of space-based SAR for monitoring water level 
changes and soil moisture (Liao et al. 2020), soil 
organic carbon and bulk density (Yang and Guo 
2019), and NEE modeling (Dabrowska–Zielinska 
et al. 2016) in various other wetland applications 
across the world. 

Solar-Induced Fluorescence
Solar-induced fluorescence (SIF) has been 
shown to be an exceptionally good proxy for 
estimating photosynthesis, and thus providing a 
potentially more direct estimate of gross primary 
productivity from remote sensing for both 
terrestrial and aquatic ecosystems (Mohammed et 
al. 2019; Gupana et al. 2021). To date, only ocean 
color sensors with pixel sizes of 300 m to 1 km, 
and atmospheric satellite sensors with pixel sizes 
of 7 to 40 km, have the high spectral resolution or 
specific band position to detect SIF, making the 
application challenging for the estuary. However, 
down-scaling to improve spatial resolution is 
possible. Recently, Turner et al. (2020) down-
scaled SIF measurements to a 500-m spatial 
resolution over California and showed reasonable 
agreement with GPP measured at the AmeriFlux 
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sites on Twitchell Island (R2 ranged from 0.3 to 
0.4). 

Observing Carbon from Space
NASA’s Orbiting Carbon Observatory (with 
the most recent mission, OCO-3, launched in 
2019) monitors carbon dioxide in the Earth’s 
atmosphere, with the potential to detect sinks 
and sources associated with land uses. However, 
its current spatial resolution of ~3.5 km2—though 
high for global- and continental-level atmospheric 
monitoring—is overly coarse to adequately 
represent the regional mosaic of vegetation 
communities, land uses, and habitat types of 
estuarine ecosystems needed for management 
goals. More generally, efforts to integrate remote 
sensing with carbon monitoring, such as the CEOS 
Strategy for Carbon Observations from Space 
(CEOS 2014), still tend to emphasize “medium”- 
and “moderate”-resolution systems (30 m to 1000 
m in the CEOS definition) that are well suited 
for upland terrestrial landscapes but limited for 
complex wetlands and other types of land–water 
interfaces. However, these initiatives increasingly 
recognize that policies will soon require much-
higher-resolution spatially explicit products (CEOS 
2014), which could stimulate further advances in 
remote-sensing technology and products. 

Emerging Trends in Complementary Observation 
Technologies
A key prerequisite for success in remote-sensing-
based assessments of primary producers is 
the ability to verify remote sensing-based 
inference with high-quality ground observations, 
which is a costly and logistically burdensome 
task in complex estuarine settings. Several 
field-data-collection initiatives, together with 
novel observation technologies, provide such 
opportunities in our region, and create incentives 
for more streamlined and collaborative data 
standardization and sharing.

Coordinated Vegetation Surveys
Relevant field data sets on primary producers 
include various vegetation survey efforts 
that collect data on plant coverage, species 
composition, and canopy structure via plot 
and transect sampling. Although data are not 

commonly shared among individual projects 
now, several broader initiatives provide selected 
data sets via national and state repositories. For 
example, California Rapid Assessment Method 
(CRAM) collects rapid data on wetland conditions, 
which include several indicators of plant 
community composition and vertical structure 
(CRAM 2013). The National Wetland Condition 
Assessment program led by the USEPA in 2011 
(USEPA 2016) collects vegetation composition, 
structure, and environmental characteristics 
across a nation-wide sample of wetland sites 
every 5 years. This program surveyed 26 sites 
in the estuary in the first survey in 2011, and 
16 sites in the 2016 survey. Selected vegetation 
data sets for 2013 through 2016 are available 
from the monitoring of the National Estuarine 
Research Reserve (NERR) site via the agency’s 
website. More locally, the Interagency Ecological 
Program (IEP) Aquatic Vegetation Project Working 
Team currently leads an initiative to publish a 
master aquatic vegetation data set for the Delta, 
compiled from past and ongoing monitoring and 
scientific programs across multiple state and 
federal agencies and universities. There is also a 
growing interest in more unified data-distribution 
platforms and repositories, making information 
available for different users. For example, the 
statewide California EcoAtlas portal uses a 
basemap from the California Aquatic Resource 
Inventory (CARI) to track the status of wetland 
projects’ various databases, and already hosts 
some of the relevant assessments, such as CRAM 
sites. 

The Nets: AeroNet, FluxNet, SpecNET, and PhenoCamNet
Because the atmosphere’s effects are arguably 
the largest source of uncertainty in chlorophyll-a 
retrieval from the water column (up to 90%), 
uncertainty about water-leaving radiance and 
reflectance must be rigorously quantified and its 
correction validated as a best practice for remote 
sensing of primary producers in the water column 
(Salama and Stein 2009; Gilerson et al. 2022). The 
Aerosol Robotic NETwork Ocean Color (AERONET-
OC) network of autonomous radiometer systems, 
which are globally distributed at fixed offshore 
and coastal sites, are critical infrastructure 
in validating and verifying the atmospheric 
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correction for water-leaving radiances and 
remote-sensing reflectance products for water-
column studies (Zibordi et al. 2009). The recent 
installation of an AERONET-OC site in Grizzly Bay 
provides an emerging opportunity to verify and 
improve atmospheric correction specifically for 
the estuary’s conditions. 

Among direct measurements of ecosystem 
productivity, publicly available products are 
available from the AmeriFlux network of sites 
that measure fluxes of carbon, water, and energy 
across the US (Baldocchi et al. 2001). The San 
Francisco Estuary region contains 18 AmeriFlux 
stations, many of which are currently active and 
provide publicly accessible measurements of 
ecosystem fluxes in CO2, CH4, water vapor, and a 
suite of relevant environmental variables across 
different representative ecosystems: different-
aged tidal and freshwater marshes (including the 
newer subsidence reversal projects), pastureland, 
and common crop types that are seen as 
important alternative land uses in the Delta 
(Matthes et al. 2015; Knox et al. 2016; Hemes et 
al. 2019). Some of these sites are equipped with 
PhenoCams that are well suited for (1) assessing 
vegetation composition, (2) how annual budgets of 
carbon uptake are functioning, (3) phenological 
patterns, and (4) broader-scale effects of restored 
wetlands and flooded agriculture on subregional 
microclimates and ecosystem functioning 
(Baldocchi et al. 2016). A wider adoption of cost-
effective PhenoCams across the region, and 
integration with the broader continental-scale 
PhenoCam cooperative network, would be highly 
promising to systematically monitor ecological 
seasonality much less invasively than field 
surveys. 

Most common applications of PhenoCams 
to date use their imagery to compute SVIs of 
greenness from local vegetation that the sensors 
observe. However, advances in automated 
photo recognition and interpretation could 
make it possible to extract other relevant 
data from the time-lapse images, such as the 
flooding, flowering, and fruiting cycles of 
plant species; disturbance; wildlife uses; and 
more. Combining PhenoCams with other in 

situ sensors that measure meteorological, 
edaphic, and hydrological conditions thus offers 
a powerful strategy for more comprehensive 
data acquisition to investigate local drivers of 
primary productivity, to validate satellite-based 
assessments, and to facilitate up-scaling for 
carbon budgeting at the regional level. 

The American SpecNet and new ChinaSpec 
Network of in situ optical instruments co-located 
with eddy-covariance towers provide a promising 
model for long-term, ground-based measurements 
of SIF, SVIs and other indicators of biodiversity—a 
model which could be used to further advance 
remote sensing of primary productivity, were 
such instruments to be deployed in the estuary 
(Gamon 2015; Zhang et al. 2021).

High-Frequency and High-Throughput In Situ Optical 
Sensors
In situ optical instruments can rapidly make proxy 
measurements of water-column hyperspectral 
absorption, attenuation and backscatter, 
chlorophyll-a and other phytoplankton pigments, 
dissolved organic matter, nutrients, and other 
abiotic conditions of the water column at very 
high temporal resolution (seconds to minutes) 
(Saraceno et al. 2009; Pellerin 2015). When 
mounted on boats with a continuous pumping 
system and GPS integration, such instruments 
provide spatially contiguous in situ aquatic 
biogeochemical data that can be used for 
monitoring, modeling, and remote-sensing 
calibration and validation (Fichot et al. 2016). 

NASA Airborne Radiometry for Coastal and Inland Waters 
Over the past decade, NASA has tested 
several airborne mission concepts to collect 
rigorous atmospheric and aquatic radiometric 
measurements over inland and coastal water 
bodies of California, including Monterey Bay, 
Lake Tahoe, and San Francisco Bay. Although 
not an imaging system, the instrument suite 
provides high-spectral-resolution and high-fidelity 
measurements, which—when geo-located with in 
situ radiometry and satellite imaging—can provide 
science-quality data to calibrate and validate 
next-generation NASA missions, and thus provide 
higher-accuracy local products for the estuary 
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community (agency managers, scientists, and 
other stakeholders, etc.) (Guild et al. 2020) 

Participatory Science
The growing participatory science effort also 
offers interesting opportunities to fill spatial 
gaps in understanding primary producers and 
ecosystem characteristics that can help inform 
mapping and validation, even though the detail 
and sampling quality of data may differ from 
systematically designed research surveys. The 
large global iNaturalist database (https://www.
inaturalist.org/) collects geolocated public reports 
on many biological species, including plants. 
Various initiatives that invite public reports and 
monitoring of native and invasive plant species 
are led by the California Native Plant Society 
and the CDFW (such as the EDDMapS mobile 
application to report sightings of invasive species). 
The USA–NPN’s (National Phenology Network’s) 
database is also accumulating observations of 
plant and animal seasonality from a wide pool 
of public participants via a program “Nature’s 
Notebook” that supports online submissions of 
phenological observations and development by 
the participants of locally focused phenology 
programs (https://www.usanpn.org/natures_
notebook). While such efforts in the estuary have 
predominantly concentrated on “emergent” 
vegetation components, notable examples of 
initiatives that focus on aquatic domains could be 
extended to the estuary. A great example of this 
is the NASA-funded project Floating Forest that 
focuses on the dynamics of global marine kelp 
forests and engages public participation via the 
Zooniverse platform (https://www.zooniverse.org/
projects/zooniverse/floating-forests/about/research).

Data Access and Discovery
There are an ever-increasing number of analysis-
ready data products available for download by 
users from agencies such as the USGS, NASA, 
NOAA, and the ESA. These include surface 
reflectance products that eliminate the need for 
atmospheric correction, and derived products 
including NDVI, EVI, LAI, phenology, land 
cover, NPP, GPP, and more. These products are 
often developed to be reasonably accurate at 
the global or continental scale, but are often ill-

suited for the precise, local solutions needed to 
support management decisions in the estuary. 
Compounding this challenge is the new reality 
that open-access data are now everywhere but are 
often not easily discoverable. Users must navigate 
multiple different data portals to discover what 
products are available to them. Even within 
NASA, multiple different distributed active 
archive data centers (DAACS) process, archive, 
document, and distribute data, including Land 
Processes, Physical Oceanography, National 
Snow and Ice Data Center, and many more. 
Recent advances are helping users overcome 
these challenges, such as the Data Pathfinders 
in NASA’s Earthdata website that provide direct 
links to commonly used data sets, curated by 
scientific application area. New cloud-based data 
processing and sharing interfaces such as Google 
Earth Engine, the CSIRO Data Cubes, and the 
USGS’s ScienceBase further facilitate data sharing 
and reduce the need to download and store large, 
publicly available data sets. With the emergence 
of such tools and platforms arises an opportunity 
to help managers and researchers close the loop 
between remote sensing and decision-making.

Preparing for the Very Near Future?

Research Priorities
Maximizing the potential of remote sensing to 
support modeling primary producers and their 
functions require more informed guidance to 
choose sensors, primary-producer indicators, 
and application scales for a given management 
problem. Maximizing remote sensing’s 
potential demands more comparative studies 
across different types of data, resolutions, 
and indicators. Developing such guidance in a 
unique estuarine context requires overcoming 
the unique barriers of land–water interfaces, 
such as high spatial heterogeneity and spectral 
artifacts that result from the hydrological 
attenuation of plant signals (Kearney et al. 2009), 
obstruction of reflectance or backscattering by 
dense canopies (Rosso et al. 2006; Duncanson et 
al. 2020), and adjacency effects caused by light 
being scattered from nearby terrestrial surfaces 
to aquatic targets (Mouw et al. 2015). Advances in 
highly customizable, locally applicable remote 
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sensors—such as PhenoCams and UAVs (Knox et 
al. 2017; Coops et al. 2019; Bolch et al. 2021)—offer 
new timely and cost-effective opportunities for 
navigating these challenges, given the infamous 
constraints on field surveys in wetland and 
coastal settings. 

On the application side, a notable gap still 
exists on the connections between “land” and 
“water” domains that historically have been 
approached by different disciplinary fields. Truly 
advancing the capacity to model and monitor 
primary productivity requires a more seamless 
integration of the contributing processes across 
land–water interfaces as well as accounting for 
their unique synergies and feedbacks. Earlier 
studies in the region provide insightful examples 
of such feedbacks; for example, Greenberg et al. 
(2012) showed that changes in radiative transfer 
in riparian zones may have implications for the 
growth and productivity of SAV. Phenological 
contrasts in reed-dominated canopies of novel 
impounded marshes show important associations 
with water temperature, microclimate, and the 
timing of whole-ecosystem primary productivity 
and greenhouse gas fluxes (Eichelmann et al. 
2018; Dronova et al. 2021). Limited understanding 
of such feedback points to larger uncertainties 
about how wetland transitional zones respond to 
the combined effects of warming temperatures, 
SLR, and changing salinity patterns (Callaway 
and Parker 2012; Beagle et al. 2019). The 
unprecedented monitoring capacity that modern 
remote-sensing platforms offer should be 
explored as a critical step toward resolving these 
uncertainties.

Closing the Loop Between Data and Management 
Decisions
The techniques and applicability of remote 
sensing to advance the scientific study of primary 
producers in the Delta are well developed, and 
clearly there are many management-relevant 
applications and products. Traditional barriers 
to the access and use of satellite data are 
disappearing. Yet, there is still a gap between 
map generation and management decisions. 
Ongoing challenges include the need for 
regionally specific, accurate data products that 

include well-quantified and well-communicated 
uncertainties, benchmarked against the existing 
data sets used to inform decisions (Sheffield et 
al. 2018). Additionally, challenges associated with 
continuity and data latency remain. As discussed 
above, there is no systematic monitoring mandate 
for airborne remote-sensing data collection, yet 
the value of annual hyperspectral remote sensing 
in the Delta has been repeatedly demonstrated. 
University researchers who produce many of 
the innovative products useful for informing 
management do not have the mandate, scope, 
or funding to produce products operationally 
beyond the research phase, and federal agencies 
charged with such operations (e.g., NASA, NOAA) 
do not provide the regionally-tuned products 
necessary for location-specific management 
decisions. Integrated environmental data analysis 
and visualization tools for synthesis and readily 
accessible online portals targeted to local needs 
could improve regional data-driven decision-
making (McCarthy et al. 2017). 

Collaboration Across Management Goals
Evidence from diverse remote-sensing 
applications in the region underscores the 
critical need for collaborations across different 
management goals. Primary producers play a 
unique role that unifies a wide range of ecological 
questions—from biogeochemistry to food webs—
and this versatility can be an important focal 
point in holistic policy, planning, and monitoring 
initiatives. Recognizing this versatility makes it 
obvious that using remote-sensing applications 
to map and model primary producers can benefit 
efforts well beyond immediate target projects. 
Similarly, local, in situ data sets on primary 
producers can benefit regional-scale efforts by 
providing monitoring baselines and opportunities 
to calibrate and validate primary productivity 
models at landscape scales. 

This calls for more communication and sharing 
of information. For example, the DSC’s Delta 
Science Program Remote Imaging Collaborative 
initiative aims to leverage various remote- 
sensing data sets and research efforts to promote 
communication as well as data and methodology 
sharing among Delta geospatial researchers and 
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data users. Important initiatives are also arising 
to streamline, consolidate, and enhance the 
capacity to monitor wetlands by using both field- 
and remote-sensing-based indicators. A notable 
example is the Wetland Regional Monitoring 
Program coordinated by the San Francisco 
Estuary Partnership (WRMP 2020), which is 
developing wetland indicators in response 
to pertinent guiding management questions 
concerning both the status and future dynamics 
of wetland projects. WRMP’s comprehensive 
scope recognizes both the unique potential of 
remote-sensing tools to support cost-effective 
spatio-temporal indicators and the need to 
integrate them with field-based calibration and 
validation (WRMP 2020). 

The time is especially ripe to develop such 
coordinated efforts in the light of the state’s 
efforts to integrate carbon- and biodiversity-
related goals in frameworks such as nature-based 
carbon solutions (Wedding et al. 2021) and in the 
convergence of other related initiatives that must 
leverage remotely-sensed data to realize their 
stated goals. From the ecological perspective, 
such efforts raise critical questions about where 
carbon and biodiversity goals can be well aligned 
(i.e., ecosystems and management pathways 
where higher diversity is expected to increase 
productivity) or not (low-diversity systems 
with high carbon sequestration potential or, in 
contrast, important high-biodiversity systems 
with low productivity) and how to best support 
synergistic measures and adaptive management 
action portfolios. Ultimately, these considerations 
are critical both to reconcile economic and 
ecological priorities as well as to balance the 
different priorities of stakeholders who manage 
ecosystems. (Deverel et al. 2017; DSC 2019; 
Chamberlin et al. 2020).

Capacity Building
Developing the workforce is critical to preparing 
the current and next generation of researchers 
and managers to take advantage of the oncoming 
data deluge. They must be conversant in data 
science and possess the computational skills 
to perform cloud computing and develop and 
execute code across multiple platforms. Many 

analysis tools also come with plentiful outreach 
materials. Google provides a whole suite of online 
training materials for Google Earth Engine 
and graphics processing unit (GPU)-enabled 
machine learning (Google Colaboratory), with the 
user community contributing many more. The 
National Science Foundation’s National Ecological 
Observatory Network (NEON) provides online 
training materials for the analysis of airborne 
hyperspectral and LiDAR data, with a focus 
on open-source R and Python. NASA’s Applied 
Remote Sensing Training (ARSET) provides online 
and in-person training to beginning through 
advanced practitioners to use satellite remote 
sensing in their environmental management 
and decision-making across NASA’s Applied 
Science focal areas of Land, Water Resources, 
Disasters, and Health and Air Quality. However, 
the workforce must also be equipped with the 
domain knowledge to appreciate the ecological 
underpinnings of the estuary and view remote-
sensing technologies with the critical lens that 
all measurement technologies and data sources 
warrant. 

The role of the University of California (UC) and 
California State University (CSU) is critical in this 
endeavor, as stewards of education, research, and 
workforce development for the state of California. 
An excellent model of this is the UC Agriculture 
and Natural Resources Drone Camp: collaborative 
efforts between several UC and CSU campuses 
that provide an intensive short course for 
participants who want to learn drone mapping. 
Workforce development also includes the future 
workforce, which must start with inspiration, 
and focus on retention, with a particular eye 
toward diversifying the workforce. This requires 
engagement with K-14 students and investment in 
student and early-career research. The California 
Sea Grant and Delta Science Program fellowships 
provide an excellent model from which to build 
for recent graduates. 

Capacity building also includes strengthening and 
integrating new and different areas of science. 
Remote-sensing technology and its applications 
must be co-developed so that its engineering 
requirements are integrated with the needs of 
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scientific investigations; then meaningful results 
can be delivered to managers and decision-
makers. Remote-sensing products need to be 
generated and delivered in a way that can be used 
by more managers and stakeholders in the Delta, 
and feedback mechanisms need to be developed 
that can feed local knowledge into improving the 
accuracy of remote-sensing products to meet local 
needs. 

Remote sensing is not a panacea to meet all 
monitoring needs; it is a complement to other 
measurement techniques and technologies. In 
situ measurements are critical to calibration 
and validation of remote-sensing algorithms, 
quantifying the uncertainty in remote-sensing 
maps, and for modeling biomass and carbon 
stocks. Thus, investments that maintain and 
build capacity for in situ measurements should 
continue, with an eye toward improving their 
complementarity with remote sensing whenever 
possible. When possible, design of plot sizes, 
sample size, and distribution should include 
consideration of remote-sensing resolution, 
and the timing of collection should consider 
remote-sensing platform overpasses and optimal 
phenological stage for remote-sensing detection. 
Complementarity also includes collecting and 
reporting spatial data quality and metadata, 
including attribute accuracy, positional 
accuracy, temporal accuracy, logical consistency, 
completeness, and lineage (Reinke and Jones 2006). 

Finally, infrastructure is a critical and often 
overlooked component of capacity building. 
Recent attention has been paid to the aging 
physical infrastructure of California with 
a particular focus on climate resiliency, as 
highlighted in the 2021 Five-Year Infrastructure 
Plan. What is missing from this and most long-
term plans is the physical–cyber infrastructure 
needed to support the growing data needs that 
remote sensing poses. For example, The Open and 
Transparent Water Data Act (AB 1755) requires 
the CDWR to create, operate and maintain a 
statewide water data platform that integrates 
water and ecological data and requires all state-
funded grant recipients to adhere to protocols for 
data sharing, documentation, and public access. 

Yet, no state agency has defined these protocols, 
nor does any individual agency have the financial 
resources or physical–cyber infrastructure to 
house and serve the terabytes and petabytes 
of raster data generated from remote-sensing 
analyses. Commercial cloud services are a viable 
alternative to creating new cyber infrastructure 
for the state but require ongoing an ongoing 
and relatively high-cost investment to maintain 
the service if the data must be ‘hot’ for frequent 
analyses and access. Infrastructure cannot be 
built or maintained without investment; this 
funding should be a priority at local, state, and 
federal levels.

CONCLUSIONS
• Remote-sensing imagery is an effective tool 

to complement monitoring the distribution 
and biomass of primary producers as well as 
modeling primary productivity in the Delta 
across the full environmental gradient: from 
the water column to wetland and terrestrial 
environments.

• The effectiveness of remote sensing in 
primary-producer assessments depends on 
its particular application to a management 
need and must be considered in the context 
of trade-offs in spatial, temporal, spectral, 
and radiometric scales of both the image data 
and the ecological targets and processes of 
interest. 

• Maximizing the benefits offered by the 
growing deluge of open and accessible new 
sensor data—including UAV imaging, space-
based imaging spectroscopy, dual-band SAR, 
and LiDAR—to meet regional needs requires 
greater capacity-building for people and 
institutions, greater cooperation between 
research groups, and standardization of large-
data-file management and sharing to meet 
user needs and legislated requirements (e.g., 
AB 1755).
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