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Highlights 
̶ On average, evapotranspiration dropped 265 mm yr-1 during the 1st year after a fire, and 169 mm yr-1 over 15 

years.  
̶ Wildfire impacts on evapotranspiration were greatest in dense, mid-elevation (900-1300 m asl) forests. 
̶ Restoration of forest density to near historical conditions, or an equivalent increase in wildfire, could further 

reduce evapotranspiration by up to 9%.  
Abstract 

We used Landsat-based measures of annual evapotranspiration (ET) to explore the effects of wildfires on 
vegetation water use across California’s Sierra Nevada. Wildfires decreased ET relative to unburned and pre-fire 
controls, in many areas this reduction persisted for at least 15 years. The ET reduction averaged 265 mm yr-1 

(36% of pre-fire ET) during the first year after fire, and 169 mm yr-1 (23%) over the first 15 years after fire. The 
ET reduction varied with burn severity, pre-fire canopy density, and hydro-topographic environment. In areas 
burned at low severity the ET reduction in the first year after fire averaged 224 mm yr-1 (31% of pre-fire ET) 
whereas high severity were reduced a 362 mm yr-1 (50% ) for the first year. Forest stands that were denser pre-
fire had a larger ET reduction across all burn severities. Evapotranspiration reduction following moderate-to-
high-severity burns was greatest at 900-1300 m asl elevation. The combination of pre-fire canopy density and 
burn severity explained 70% of the spatial variation in first-year ET reduction. Forest restoration and a 
reintroduction of low-intensity fire have been proposed as management practices to mitigate fire risk and 
improve ecosystem health. Our findings illustrate that restoration and fire reintroduction may reduce the current 
total ET by up to 9%, with potential benefits for downstream water supply in a globally important food-
producing region. 

1. Introduction 
Many Western United States forests are 

severely overstocked with high densities of small 
trees owing to fire suppression and logging of 
large trees since the early 20th century (Collins et 
al. 2017a; Hessburg et al. 2005; Knapp et al. 
2013; Miller et al. 2012; Safford and Stevens 
2017). These forest management practices have 
also led to the accumulation of ladder and 
surface fuels, which coincide with climate 
warming, has contributed to progressively larger 
and more-severe wildfires (Collins et al. 2017a; 
Westerling et al. 2006). Mitigating the wildfire 
hazard in these highly altered forests by reducing 
tree density and fuel loads will also change the 
water balance; and these potential water co-
benefits should be considered in designing and 
evaluating restoration treatments(Roche et al. 
2020; Saksa et al. 2020). Uncharacteristically 
dense forests have not only reduced overall water 
yield but also increased inter-tree competition for 
water, making contemporary forests more 
vulnerable to drought and insect attack (Bales et 
al. 2018; Goulden and Bales 2019; Liu et al. 
2019; Stephens et al. 2018; Young et al. 2017). 
While monetizing water-related benefits of 
thinning has the potential to help offset costs, 
lack of regionally relevant data to project and 

verify these benefits is a barrier to 
comprehensively planning and evaluating forest-
thinning projects. 

Mechanical thinning, prescribed fire, and 
managed wildfire can mitigate the risk of high-
severity wildfire, while reducing 
evapotranspiration (ET) and plant stress, and also 
increasing water yield (Andréassian 2004; 
Battles et al. 2018; Boisramé et al. 2017; 
Boisramé et al. 2018; Boisramé et al. 2019; 
Hallema et al. 2018b; Hibbert 1965; Knapp et al. 
2017; Saksa et al. 2017). However, the effect of 
fire on ET is highly variable, depending on pre-
disturbance vegetation composition and 
condition, climate, topography, disturbance 
severity and recovery rate (Bart et al. 2016; 
Nolan et al. 2014a; Nolan et al. 2015; Nolan et 
al. 2014b; Poon and Kinoshita 2018a; Wittenberg 
et al. 2007).  

Past studies provide a limited basis for 
predicting how forest-water-use patterns across a 
specific region change with disturbance. 
Whitehead and Kelliher (1991) modeled water 
use in a conifer forest and found that a 42% 
reduction in leaf area index (LAI) resulted in 
36% less annual canopy transpiration, and 27% 
less canopy evaporation. Saksa et al. (2017) 
found that light thinning (8% reduction in LAI) 

rbales
Typewritten Text
Accepted 7/28/20 Journal of Hydrology



 2 

increased mean-annual runoff by 14% in a high-
precipitation central-Sierra catchment, but had 
less noticeable impact in a low-precipitation 
Southern Sierra location. They suggested that 
this lack of hydrologic impact in the drier site 
was due to vegetation regrowth that offset the 
effect of thinning and/or precipitation variability 
masked the effects. Likewise, Bart (2016) found 
that the response of runoff to disturbance is often 
obscured by high interannual precipitation 
variability. Assessments of the effect of fire on 
the water balance based on annual river flow 
suggest that moderate-to-high severity wildfire 
enhances discharge for five years or longer 
(Hallema et al. 2018a; Hallema et al. 2018b; 
Hallema et al. 2017); however, precipitation 
variability introduces considerable uncertainty in 
these analyses.  

Recent advances in estimating 
evapotranspiration with remote sensing provide a 
more-direct strategy to quantify changes in 
vegetation water use following disturbance. 
Evapotranspiration can be estimated using 
bottom-up physically based models (Jin et al. 
2011; Ryu et al. 2011), or top-down data-driven 
methods based on remote-sensing imagery and 
extrapolated meteorology (Li et al. 2018; Poon 
and Kinoshita 2018a; Xiao et al. 2008). Goulden 
et al. (2012) developed a simple, data-driven 
method for distributing eddy-covariance ET 
measurements from individual sites using a 
relationship with satellite observations of 
Normalized Difference Vegetation Index 
(NDVI). This method has been successfully used 
to map ET in Sierra Nevada forests (Goulden et 
al. 2012; Goulden and Bales 2014; Roche et al. 
2018). Roche et al. (2018) subsequently used this 
approach to explore the effects of management 
and fire on evapotranspiration on several patches 
of Sierra Nevada forest. These previous studies 
demonstrated the effectiveness of using data-
driven approach to quantify evapotranspiration 
changes over the Sierra Nevada forests.  

 Our goal was to broaden the investigation of 
wildfire impacts on vegetation water use by 
analyzing wildfires during 1985-2017 throughout 
the Sierra Nevada and southern Cascade Range. 
We created and used an annual, 30-m resolution 
evapotranspiration dataset to explore the changes 
in vegetation water use before and after large 
wildfires. We focused on three questions: First, 
how much does wildfire affect 
evapotranspiration, and how have the effects of 
wildfire on Sierra Nevada evapotranspiration 
varied over the past three decades? Second, how 

does the effect of wildfire on evapotranspiration 
vary with fire severity, pre-fire vegetation 
condition, climate, and landscape attributes? 
Third, how would a future increase in fire 
occurrence across the Sierra Nevada affect 
evapotranspiration?  
2. Data and methods 
2.1 Study area and fires. We considered most of 
the large wildfires that occurred in the Sierra 
Nevada and Shasta river basin from 1985 to 2017 
(Fig. 1). The study area covered 137,037 km2 and 
contained 14 major source-water basins that 
provide over 60% of California’s water supply 
(Bales et al. 2011; Bales et al. 2006). Sierra 
Nevada forests are home to diverse conifer 
species, contain large carbon stocks, and provide 
important wildlife habitat (North 2012). The 
study area has complex terrain, with steep 
elevation and climate gradients, and large inter-
annual precipitation variability (Bales et al. 
2006). 
California’s climate is Mediterranean, with cool-
wet winters followed by warm-dry summers, 
which creates conditions conducive to wildfire. 
The annual area burned and fire severity have 
increased in recent decades due to fuel 
accumulation and longer fire seasons (Westerling 
et al. 2006).  

We used fire records from the “Vegetation 
Burn severity classified by change in Basal Area” 
dataset 
(https://www.fs.usda.gov/detail/r5/landmanagem
ent/gis/?cid=stelprd3804878, accessed Jan 2020), 
which includes fire perimeter, timing, and burn 
severity for 635 large fires (>4 km2) in California 
based on Landsat imagery. Burn severity was 
broken into six classes based on basal-area loss 
(0-10, 10-25, 25-50, 50-75, 75-90, and 90-
100%). The Relative Differenced Normalized 
Burn Ratio (RdNBR) (Miller and Thode 2007), 
calculated from the pre- to post-fire change in 
Landsat imagery, was used to classify burn 
severity by reference to the field-measured 
Composite Burn Index (Miller et al. 2009; Miller 
and Quayle 2015). The burn severity is a relative 
measure based on the normalization of each 
image, and thus was only used as an indicator of 
relative fire-severity class rather than the exact 
amount of basal area reduction. The fire-severity 
dataset had a 30-m resolution, which we 
resampled into 200-m pixels using the majority 
method. This coarser resolution reduced noise 
from the fire-severity classification and also 
computational load. The analysis ultimately 
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considered approximately 300,000 pixels during 
1985-2018.  

2.2 Analyzing evapotranspiration responses 
to fires. Gridded annual ET from 1985 to 2018 
was calculated using a non-linear, data-driven 
regression method based on the correlation 
between eddy-covariance measurements of 
annual evapotranspiration and satellite 
imagery derived NDVI, updated through 2016 
(Goulden et al. 2012). The ET data can be 
downloaded from 
https://doi.org/10.6071/M3010D. More 
information about ET estimation is included in 
the supplementary material “ET estimation 
method” and Fig. 1 and S1 (Goulden et al. 
2012; Goulden and Bales 2019; Su et al. 2017; 
Sulla-Menashe et al. 2016). From gridded data 
we derived both the absolute (aET) and 
relative (rET) reduction in evapotranspiration 
caused by fire: 
𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = (𝑎𝑎𝑎𝑎𝑖𝑖−1 − 𝑎𝑎𝑎𝑎𝑖𝑖) − (𝑎𝑎𝑎𝑎𝑖𝑖−1

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 − 𝑎𝑎𝑎𝑎𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛) (1) 

𝑟𝑟𝑎𝑎𝑎𝑎𝑖𝑖 = 100% × 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖/𝑎𝑎𝑎𝑎𝑖𝑖−1                (2) 
where 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑎𝑎𝑎𝑎𝑖𝑖 are the absolute and 
relative ET changes in year i. 
𝑎𝑎𝑎𝑎𝑖𝑖−1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑖𝑖 indicate the ET value in burned 
areas estimated one year before the fire and in 
year i, respectively. 𝑎𝑎𝑎𝑎𝑖𝑖−1

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 

indicate evapotranspiration in unburned control 
areas estimated one year before the fire and in 
year i, respectively.  

The unburned areas were used as a control, or 
reference, to isolate the change in 
evapotranspiration caused by fire alone. The 
unburned control pixels were selected for each 
fire using two criteria. First, unburned controls 
were outside the 10-km buffer zone of a fire 
perimeter, but within the same 12-digit 
hydrologic unit code watershed 
(https://water.usgs.gov/GIS/huc.html), as areas in 
the same watershed were viewed as more likely 
to be hydrologically similar. Second, unburned 
controls were located within the same 100-m 
elevation bin as burned pixels.  

 We explored the correlations between fire-
caused changes in aET and rET, and eleven 
attributes from three categories (Table 1): i) Pre-
fire vegetation condition, represented by five-
year-average pre-fire NDVI and pre-fire 
vegetation types from National Land Cover 
Database (NLCD in 1992, 2001, 2006, and 
2011), ii) landscape and climate, i.e. elevation, 
slope, Northness (combined slope and aspect), 
latitude, and daily temperature and annual 
precipitation averaged over 1985-2018, iii) fire 

characteristics, represented by fire size, change 
in Normalized Burn Ratio (dNBR), and Relative 
differenced Normalized Burn Ratio (RdNBR).  

We further analyzed the relationship between 
the evapotranspiration change with fire of each 
severity and four sets of possible correlates: i) 
pre-fire NDVI (five-year-average), ii) local 
climate (average precipitation and temperature 
over 1985-2018), iii) elevation, and iv) fire 
severity (Table 1). The mean effects of fire on 
evapotranspiration were calculated for 100-mm 
wide precipitation bins, 0.1 NDVI unit bins, 1°C 
temperature bins, 100-m elevation bins for three 
fire-severity classes, i.e. 0-25%, 25-75%, and 75-
100% basal arear reduction. The samples size in 
each bin varied from 100 (bins with fewer than 
100 pixels were excluded) to 50,000 pixels, 
which represent areas of 4 km2 to 2000 km2.  
2.3 Predicting evapotranspiration reduction. 
We applied two statistical methods to further 
explore the effects of fire on 
evapotranspiration: multi-variable linear (Fig. 
S2) and random-forest regression (Fig. S3) 
(Breiman 2001). Both methods have been 
applied to similar problems. Ma et al. (2017) 
used the multi-variate linear regression to 
model individual tree growth in Sierra Nevada 
forests; and Boisramé et al. (2018) used the 
random-forest to illustrate how vegetation, fire 
history, and landscape positions influenced water 
availability in a restored Sierra Nevada forest. 
Both models were trained using a randomly 
selected subset of 10% of the burned pixels, and 
prediction accuracy was evaluated by 
comparison against the remaining 90%. These 
training and testing processes were repeated 10 
times, and model skill assessed by R2 and RMSE 
averaged across the runs.   

We also projected the possible Sierra-wide 
reduction in aET under three possible 
disturbance scenarios. First was a <25% basal-
area reduction, equivalent to low-severity fire, as 
might occur with a widespread reintroduction of 
low-intensity prescribed fire and light 
mechanical thinning to reduce surface fuel 
(Saksa et al. 2017). Second was a 25-75% basal-
area reduction, as might occur with a systematic 
effort to restore historic conditions using 
thinning, prescribed fire, and managed wildfire. 
Moderate-severity fires in fire-excluded forests 
provide a biomass reduction that approximates 
the structure reported for early 20th century 
forests (Collins et al. 2011; Collins et al. 2017a; 
Collins et al. 2018). Third, we considered 

https://doi.org/10.6071/M3010D
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widespread severe fires resulting in >75% basal-
area reduction, as might occur with frequent 
severe fires in the absence of efforts to decrease 
fuels.   

We used Landsat-derived indices of fire 
severity and vegetation conditions to model the 
possible ET reduction with fire. We summarized 
the mean and standard deviation values of the 
fire index (dNBR) over areas burned during 
1985-2017 to indicate fire-severity classes (Fig. 
S4b). Forest density was represented by the 
current NDVI and vegetation type map, for 
which only dense forests (annual mean 
NDVI>0.4 during 2018 and forest land cover 
types in NLCD2016) in the 500-2500 m 
elevation range were included. An additional 
restriction for this analysis was that forests had 
not been burned in a large wildfire in the past 20 
years (Fig. S4), given the expectation that these 
locations will have higher fuel loads and fire 
risks, and will be a higher priority for restoration. 
The evapotranspiration reductions from altered 
fire frequencies and severities were modelled 
based on the dNBR ranges and NDVI map over 
15 years following fire (Fig. S5). The 15-year 
total evapotranspiration reduction was estimated 
as a ratio compared to the 1st year post-fire ET 
reductions (Fig. 3; Table S1). 

3. Results 
3.1 Fire pattern and evapotranspiration 
disturbance The area burned annually 
averaged 244 km2 yr-1 during 1986-2000 
period and increased to 457 km2 yr-1 for 2001-
2017 period (Fig. 2). The 1st year post-fire ET 
reduction across the area ranged from 4×10-3 
billion m3 yr-1 in 1995 to 0.3 billion m3 yr-1 in 
2015 (Fig. 2a). The local mean 
evapotranspiration reduction, calculated as the 
total evapotranspiration change divided by the 
total burned area, averaged 265±79 mm yr-

1(mean±std, calculated from Equation 1). Both 
annual area burned and evapotranspiration 
reduction were correlated with mean annual 
temperature, with a Pearson’s r of 0.54 and 
0.51, respectively (p value<0.01).  

Aggregating across all fires shows a 
consistent pattern of ET reduction in the first 
year after fire, followed by a gradual recovery 
over the subsequent 15 years (Fig. 3a). The ET 
reduction relative to the pre-fire and unburned 
control values in the first year after fire averaged 
224 mm yr-1 in the lowest fire severity class 
(<10% basal area mortality) and 362 mm yr-1 in 
the highest fire severity class (>90% basal area 

mortality) (Fig. 3b). The ET recovery in all burn 
classes had not completely recovered after 15 
years, and the mean ET across low burn severity 
pixels was still only ~80% of that in the 
unburned controls. This lack of complete 
recovery across the population of low burn 
severity pixels reflected spatial heterogeneity in 
recovery rate. More than 65% of these pixels ET 
had recovered fully by 15 years, while the 
remaining ~35% still had reduced ET relative to 
the unburned control (Fig. 3c). The mean rate of 
ET recovery in each burn class began to level off 
over time (Fig. 3b). ET varied little over the five 
years before fire, with slightly lower values for 
areas that burned with moderate-to-high severity 
(>25% basal area mortality) (Fig. 3a).  
3.2 Attributes correlated with 
evapotranspiration response. The correlation 
matrix (Fig. 4) showed that first-year post-fire 
ET reduction (aET) was most-strongly 
correlated with the five-year average pre-fire 
NDVI (bNDVI, r = 0.74), followed by dNBR 
(r = 0.66) and precipitation (r = 0.47). The 
linear relationships of environmental attributes 
with relative ET reduction (rET) were less 
strong than those with aET. dNBR showed 
positive correlations with rET reduction (r = 
0.65). There were additional correlations 
among the Landsat-derived indices (bNDVI, 
dNBR, RdNBR), between bNDVI and 
precipitation, elevation and temperature, and 
between aspect and slope. Some non-linear 
relationships were observed between the ET 
reductions and environmental attributes (Fig. 
S3).   

Both rET and aET were greater in areas with 
denser pre-fire vegetation (bNDVI; Fig 5). The 
fire-impacted areas were evenly distributed 
across bNDVI values of 0.3-0.7 (Fig. 5a). For 
areas burned at moderate-severity (25-75% basal 
area reduction) rET exceeded 35% and aET 
exceeded 200 mm yr-1 for areas with bNDVI 
higher than 0.5 (Fig. 5b and 5c). For NDVI 
between 0.5-0.7, each 25% reduction in basal 
area resulted in a 30-80 mm yr-1 drop in ET. 

Most fire-impacted areas had a long-term 
mean precipitation of 200-900 mm yr-1, with aET 
and rET significantly larger in wetter areas (800-
1500 mm yr-1) (Fig. 5d, 5e, 5f), coincident with 
higher rates of evapotranspiration (>700 mm yr-

1) in the unburned controls. Areas burned at 
moderate-severity aET was 300-400 mm yr-1, 
with rET being 40-60% for higher-precipitation 
areas (Fig. 5e, 5f). 
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Evapotranspiration in unburned areas peaked 
(~750 mm yr-1) at 600-1200 m elevation, 
whereas fires occurred over a wider elevation 
range, with extensive burning at 500-2000 m 
(Fig. 6a). The aET peaked at mid-elevation (900-
1300 m), with a smaller aET at lower and higher 
elevation (Fig. 6b). The aET reached 400 mm for 
high-severity areas (75-100% basal-area 
reduction) at mid-elevation (900-1300 m), with a 
moderately lower aET in less-severe burns (Fig. 
6b). The rET range was 40-60% for most 
moderate-to-high severity burns (Fig. 6c). The 
majority of fires occurred in areas with a mean 
temperature of 7-16ºC (Fig. 6d). Pre-fire 
evapotranspiration was greatest (>650 mm yr-1) 
at a mean temperature of 12-15ºC. The absolute 
reduction in ET was greatest at a mean 
temperature of 11-14ºC (Fig. 6e). The rET was 
higher in cooler zones (Fig. 6f). The ET trends 
with temperature broadly paralleled those with 
elevation (Fig. 6), reflecting the negative 
correlation between temperature and elevation 
(Fig. 4).  
3.3 Prediction of possible ET reduction with 
changes in fire. The multivariate-linear-
regression model (Equation 4) that combines 
dNBR and five-year-average pre-fire NDVI 
(bNDVI) achieved a R2 of 0.70 and RMSE of 
105 mm in modeling aET.  

𝑎𝑎𝑎𝑎𝑎𝑎 = 0.41𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 + 622.84𝑏𝑏𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏
− 234.61       (3） 

The addition of further variables into the model 
only improved the overall accuracy marginally 
(R2 from 0.7 to 0.73, Fig. S2). 

The random-forest regression achieved a 
higher accuracy in modeling aET, with an R2 of 
0.81 and RMSE of 83 mm. The random-forest 
regression also showed bNDVI and dNBR to be 
the most-important variables. Nine additional 
variables contributed to the improvement of the 
random-forest model fit for aET (Fig. S3), but 
with an increased risk of over-fitting and 
collinearity.  

We used the multivariate-linear-regression 
model (Equation 4) to estimate how potential 
change in ET was influenced by fire severity in 
dense, long unburned forests. Our forest area 
analyzed accounted for 27% (37,000 km2) of the 
total Sierra Nevada (137,037 km2) and 68% of 
the forest area (54,412 km2). The resulting Sierra 
Nevada-wide evapotranspiration reduction in the 
15-year post-treatment period was 5.3±1.0 billion 
m3 yr-1 (mean±sd) for areas burned at moderate 
severity, equivalent to 9±1% of the current 

annual evapotranspiration. The 
evapotranspiration reduction was 4.4±0.9 billion 
m3 yr-1 for areas burned at low-severity, and 
6.5±1.3 billion m3 yr-1 for high severity areas 
(Fig. S5, Table S1).  

4. Discussion 
4.1 Controls on evapotranspiration reduction. 
The reduction in evapotranspiration following 
fire was strongly correlated with burn severity 
and pre-fire vegetation density (Fig. 4). These 
patterns are consistent with biophysical 
processes (Bart et al. 2020; Poon and 
Kinoshita 2018b), though they may also in part 
reflect correlations between NDVI, 
evapotranspiration and NBR, as each 
incorporates Near Infrared reflectance in their 
calculation. We explored the likelihood of 
these possible mathematical artifacts by 
considering both aET and rET, and also by 
using the five-year-average pre-fire NDVI 
(bNDVI) as a predictor of pre-fire conditions. 
In principle, rET would be expected to be less 
mathematically correlated with bNDVI than 
would aET, and a five-year bNDVI would be 
expected to be less mathematically correlated 
with aET than would a one-year bNDVI. We 
observed consistent results across all analyses 
(Fig. 5, 6), implying that our main findings 
primarily reflect biophysical processes rather 
than underlying mathematical dependencies.  

Our study corroborates previous watershed-
based observations of the ET response to 
wildfire, and extends these analyses over broader 
areas, while also relating the results to 
environmental attributes. Both Roche et al. 
(2018) and Poon and Kinoshita (2018b) found 
fire-induced evapotranspiration reduction 
increased from low to high burn severity. Roche 
et al. (2018) also reported that the fire-induced 
evapotranspiration reduction was greatest in 
denser forests with larger pre-fire basal areas.  

The largest absolute ET reductions (aET) 
occurred in locations where severe wildfires 
burned in dense forests (Ghazoul et al. 2015; 
Seidl et al. 2016; Seidl et al. 2017). These 
regions occur in wetter areas (P > 1000 mm yr-1; 
Fig. 5), where sufficient water is available to 
support high primary productivity (Bales et al. 
2018; Goulden and Bales 2014). Non-forested 
vegetation types, including shrubland and 
herbaceous communities, had lower aETs and 
rETs than forests, which is consistent with their 
less-dense pre-fire canopies and lower rates of 
pre-fire ET (Fig. S6, Fig. 5). Evergreen forest 



 6 

(mainly montane mixed-conifer) was the 
dominant burned vegetation type (57%), which 
exhibited the largest aET (324 mm on average) 
and rET (52% on average) reductions among the 
five vegetation types considered (Fig. S6). Mixed 
forest (consisting of hardwoods and conifers) 
also experienced high aETs and rETs, but 
accounted for a small fraction (4%) of the burned 
area. The aET and rET in deciduous forest 
(mainly oak species) was significantly lower than 
that in other forest types, probably due to lower 
tree mortality and more rapid recovery (Cocking 
et al. 2014; Nemens et al. 2018; Varner et al. 
2016). Most oak species in California survive 
wildfire and are able to subsequently resprout; 
this allows mature plants to maintain deep 
rooting systems and rapidly regrow dense 
canopies after fire. Conifers are unable to 
resprout and must reestablish canopy cover and 
root systems by regenerating new individual 
from seed. This is also consistent with the forest 
type transition after wildfires, in which 66% trees 
survived in deciduous forests, whereas only 54% 
remained as evergreen forests (Table. S2). A 
more-rapid recovery by resprouting species has 
been reported in other ecosystems, including 
Eucalyptus forest (Nolan et al. 2015).  

The responses of aET and rET to wildfire 
were similar across elevation and temperature 
(Fig. 6), with peaks in the mid-elevation and 
mid-temperature belt. This zone coincides with 
the highest rates of primary production and 
biomass(Goulden and Bales 2019), and also has 
a comparatively high rate of wildfire (Miller et 
al. 2012). Higher elevations tend to have reduced 
primary production and less-severe fire weather, 
leading to less-frequent wildfire. Warmer 
conditions occur at lower elevations, which are 
too dry to support dense canopies (Bales et al. 
2011; Bales et al. 2006). Some exceptions exist 
at higher elevations (>2000 m), where rET 
increased slightly in the severely burned areas 
(>75% basal area). The increased rET (>50%) in 
those higher-elevation areas reflects forest that is 
particularly vulnerable to extensive high-severity 
fire effects (Ghazoul et al. 2015; Seidl et al. 
2016; Seidl et al. 2017). The vegetation at higher 
elevation includes Subalpine Conifer, Lodgepole 
Pine, Red Fir, and Jeffery Pine, according to the 
tree type in the Wildlife Habitat Relationships 
classification system from Calveg dataset 
https://www.fs.usda.gov/detail/r5/landmanageme
nt/resourcemanagement/?cid=stelprdb5347192). 
These forests have less biomass and leaf area 
than mid-elevation forests, and are historically 

associated with longer fire-return intervals and 
greater proportions of stand-replacing fire (Fites-
Kaufman et al. 2007). These forests also 
experience a slower recovery from fire (Meng et 
al. 2015) due to energy limitations, leading to a 
comparatively greater ET reduction with fire. 

Neither slope nor aspect was significantly 
correlated with ET reduction (Fig. 4 and Fig. S7). 
This finding diverges from some site-level or 
basin studies, where aspect and/or slope 
impacted the ET response through its influence 
on radiation, moisture, and vegetation growth 
(Bart et al. 2016; Ebel 2013; Kinoshita and 
Hogue 2011; Nolan et al. 2015). Regional studies 
of the impact of large wildfires have shown 
relatively weak relationships with slope and/or 
aspect, as high-severity fire often occur across a 
range of topographic settings; Moreover, the 
relatively coarse spatial unit in this study (200 m) 
may also mute the relationships observed in at 
smaller scale basal-level studies. The impacts of 
topography at the regional level are often 
marginal, and mainly associated with initial 
vegetation density and ET (Hallema et al. 
2018b).  
4.2 Recent wildfire-driven trends in 
evapotranspiration. The total area burned 
across the Sierra Nevada was 78% higher in 
2001-2017 relative to 1985-2000, coincident 
with warming and drought (Fig. 2). Moreover, 
the area burned at high severity in 2001-2017 
was 2.6 times that in 1985-2000. Similar 
trends have been reported across the Western 
United States (Dennison et al. 2014; Miller 
and Safford 2012; Westerling 2016). These 
increases have been attributed to overly dense 
forests with a buildup of surface and ladder 
fuels (Stephens et al. 2012; Stephens et al. 
2009; Stevens et al. 2017; Tubbesing et al. 
2019), and a longer fire season with drier and 
warmer summers and earlier spring snowmelt 
(Westerling et al. 2006).  

The Sierra-wide evapotranspiration reduction 
from wildfire shows an increasing trend (0.003 
bm3/yr, p value= 0.034, Fig. 2 and Fig. S8a) from 
1985 to 2017 reflecting both increasing burned 
area (Fig. S8b) and more-severe burns (Fig. S8c), 
with large inter-annual variation. Fire impacts on 
Sierra Nevada forests and hydrology are 
projected to increase further with a climate 
warming (Liang et al. 2017) and further 
accumulation of fuel (Hurteau et al. 2019; 
Stephens et al. 2018).  

https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=stelprdb5347192
https://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=stelprdb5347192
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4.3 Sensitivity of evapotranspiration to 
possible increases in fire occurrence. We used 
the multi-variable regression analysis to 
estimate the Sierra Nevada-wide changes in 
evapotranspiration that would be expected for 
three possible changes in future fire 
occurrence. We focused on a 15-year future 
fire return interval, which approximates the 
historical fire-return frequency in the mixed-
conifer region of our study area, i.e. 12 years 
reported by Safford and Van de Water (2014); 
Scholl and Taylor (2010). Our simulation 
indicates a reintroduction of low-intensity 
burning or light mechanical thinning (<25% 
basal area reduction) would have the smallest 
effect (4.4±0.9 billion m3 yr-1 equivalent to 
118±24 mm/yr over the restorable areas) on 
ET (Fig. S5, Table S1) (Bart 2016; Saksa et al. 
2017). Comparing to the low-intensity 
burning, the evapotranspiration reduction 
would increase by 19% with more-intensive 
management (25-75% basal area reduction) 
(Safford and Stevens 2017), and another 23% 
with a large increase in severe wildfire (>75% 
basal area reduction).  

A large increase in high-severity wildfires 
would have detrimental impacts on human 
communities (Stephens et al. 2018), wildlife 
habitat, and carbon stocks (Spies et al. 2012; 
Stephens et al. 2018; Stephens et al. 2016). 
Additionally, increases in high-severity fire 
effects would likely lead to erosion, reservoir 
sedimentation, and reduced water quality 
(Collins et al. 2017b; Ghazoul et al. 2015; Seidl 
et al. 2017). The result is a tradeoff, with severe 
fires reducing evapotranspiration and potentially 
increasing runoff and water yield, along with a 
suite of potentially deleterious effects. The 
management challenge is to balance these 
effects, and to design practices that 
simultaneously reduced wildfire probability and 
severity, protect habitat, carbon stocks and water 
quality and maximize runoff (Liang et al. 2018; 
North et al. 2015; North et al. 2012). Practically, 
forest restoration can be limited by cost, 
accessibility, and ownership, which may limit the 
area and pace of restoration (Lydersen et al. 
2019; North et al. 2015). We found that much of 
the evapotranspiration reduction (equivalent to 
8±1% of the current annual evapotranspiration) 
occurs even in low-severity fires, implying that 
less-severe treatments may provide a meaningful 
increase in water yields (Saksa et al. 2020; Saksa 
et al. 2017).  

4.4 Limitations and future research needs. 
Our analysis could be expanded in three 
directions. First is consideration of site-based 
observations or process-based modeling to 
cross-validate and further explore our results. 
Second, subsetting the data would allow 
consideration of the longer-term 
evapotranspiration recovery and the variation 
caused by further environmental attributes. 
Third, our approach provides a foundation for 
considering changes in additional ecosystem 
properties and services following disturbance. 

We used data-driven ET estimates to evaluate 
the effects of wildfires. This method has been 
successfully applied across the Sierra Nevada in 
previous studies (Goulden et al. 2012; Goulden 
and Bales 2019; Roche et al. 2018), but 
limitations nonetheless exist in predicting ET. 
The RMSE (108 mm/year) of our ET estimation, 
was not large compared to the errors in model 
simulated ET reported by Chen et al. (2016) and 
Blount et al. (2020), which varied from 11 to 27 
mm/month depending on vegetation types of 
flux-tower sites. The variations among 
vegetation type was consistent with Chen et al. 
(2016) in that forest sites (175 mm/year) have 
larger errors than grassland (45mm/year) and 
shrubland (50 mm/year), as less of the ET 
calibration data are from dense forest sites (Fig. 
S1). The mean bias error in our study was -36 
mm/year in unburned sites, and 29 mm/year in 
burned sites, which could underestimate the ET 
reduction after wildfires by 65mm/year. These 
magnitude of bias are smaller than modeled 
results in Blount et al. (2020); Poon and 
Kinoshita (2018b), which overestimated the ET 
reduction by approximately 111 mm/year.  
Quantifying runoff changes associated with 
reductions in ET is critical for predicting water 
supply. Using a similar ET estimation model, 
Roche et al. (2020) projected a 10% increase in 
runoff after 50% of basal area reduction in two 
Northern Sierra Nevada basins. These changes in 
runoff depend on vegetation type, hydrologic 
condition, and climate, and thus may vary 
substantially over the Sierra Nevada basins.   

Moreover site-level observations (Alfaro-
Sánchez et al. 2015; Dore et al. 2012; Nolan et 
al. 2014a) and process-based hydroecological 
models (Komatsu and Kume 2020) can better 
interpret the biophysical mechanisms by 
partitioning ET, and by analyzing the effects of 
vegetation loss and recovery (Goeking and 
Tarboton 2020; Kinoshita and Hogue 2015; 
Komatsu and Kume 2020). Some previous 
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studies have concluded that canopy loss has a 
marginal impact on ET, either due to increased 
subcanopy radiation and evaporation, and/or 
rapid post disturbance recovery (Bennett et al. 
2018; Biederman et al. 2015; Goeking and 
Tarboton 2020). Cross-comparing results 
between data-driven and physically based 
modeling studies may prove useful for 
reconciling these results, while bringing deeper 
insights into how and why ET is affected by 
wildfire (Bart et al. 2016; Federer and Lash 
1978). 

We focused on a 15-year post-fire window, 
whereas a full recovery to pre-fire ET levels may 
require longer (Fig. 3). This recovery may vary 
with climate, vegetation type and ecological 
processes, such as competition or facilitation 
(Meng et al. 2015; Yang et al. 2017); knowledge 
of the longer-term effects of fire on vegetation 
water use is important for planning forest 
restoration and water management (Tubbesing et 
al. 2019; van Mantgem et al. 2011; Vernon et al. 
2018).  

Finally, similar analyses are needed to look at 
the effects of fire and management on other 
ecosystem services. Fire effects on forest 
ecosystems are multifaceted, including reduced 
carbon stocks (DORE et al. 2008; Murphy et al. 
2019), altered wildlife habitat (Stephens et al. 
2019) and forest energy balance (Amiro et al. 
2006), and degraded water quality (Hallema et al. 
2018a). The recovery of some of these 
properties, such as biomass pools, may be 
comparatively slow (Amiro et al. 2010). 
Likewise, analyses of actual management 
projects are needed. Additional factors may 
impact the ET after forest treatments, including 
changes in biomass, density, tree size and species 
composition can influence the post-treatment 
transpiration (Bart et al. 2016; Roche et al. 2018; 

Saksa et al. 2020; Saksa et al. 2017); treatment 
methods (mechanical thinning, clear cutting, 
with/without prescribed fires) and removing 
versus leaving woody debris on the ground can 
change evaporation demand by altering the land 
surface albedo and wetness (Knapp et al. 2017; 
Stephens and Moghaddas 2005; Walker et al. 
2006). 

5. Conclusions 
Wildfires in California’s Sierra Nevada 

during 1985-2017 reduced vegetation water use 
by an average of 265 mm yr-1 (36% of pre-fire 
ET) in the first year following fire, and 169 mm 
yr-1 (23%) averaged over the first 15 years 
following fire. The decline in evapotranspiration 
increased with fire severity and pre-fire 
vegetation biomass. Dense, mid-elevation, 
evergreen forests exhibited the largest 
evapotranspiration decline following wildfire. 
We used the observed changes in ET following 
fire to explore the effects of possible widespread 
forest restoration efforts. This data-driven 
analysis revealed a 9% ET reduction if 27% of 
the Sierra Nevada received a treatment 
equivalent to a moderate severity burn, 
underscoring the possibility that ecological 
restoration may simultaneously reduce ET and 
drought stress and increase water yield, in 
addition to previously reported reductions in fire 
severity.   
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Table 1 Data characteristics and sources. 

Attribute  Resolution/Unit Indication/Equation Data source  

NDVI 30m 
 

 
 

Landsat 5,7,8 surface reflectance, 
GEE, USGS 

Vegetation type 30m NA NLCD 

Elevation 30m NA SRTM 

Northness 30m 𝑑𝑑𝑁𝑁𝑟𝑟𝑁𝑁ℎ𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑠𝑠𝑎𝑎(𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑛𝑛) ×
𝑐𝑐𝑁𝑁𝑛𝑛(𝐴𝐴𝑛𝑛𝑆𝑆𝑛𝑛𝑐𝑐𝑁𝑁)       SRTM based Slope and Aspect  

Precipitation 800m annual total precipitation PRISM 

Temperature 800m annual mean temperature PRISM 

Fire severity 30m 7 fire severity classes  Vegetation burn severity, USFS 

Fire size km2 area of each fire Perimeters of fires, USFS 

dNBR 30m 

 

MTBS 

RdNBR 30m 

 
 

 

MTBS 

dNBR (Delta Normalized Burn Ratio) and RdNBR (Relative differenced Normalized Burn Ratio) are burn 
severity indices calculated from Landsat imagery. NIR (near infrared), Red, and SWIR2 (shortwave 
infrared band2) are surface reflectance bands for NDVI, dNBR, RdNBR calculation. GEE (Google Earth 
Engine) and USGS (US Geological Survey), NLCD (National Land Cover Database), SRTM (Shuttle 
Radar Topography Mission), PRISM (Parameter-elevation Regressions on Independent Slopes Model), 
USFS (US forest service), and MTBS (Monitoring Trends in Burn Severity) are data sources.  
  

𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑏𝑏𝑑𝑑 − 𝑆𝑆𝑆𝑆𝑏𝑏𝑑𝑑2
𝑑𝑑𝑏𝑏𝑑𝑑 + 𝑆𝑆𝑆𝑆𝑏𝑏𝑑𝑑2

; 
𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛  

𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑

��𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛/1000�
 

𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑑𝑑𝑏𝑏𝑑𝑑 − 𝑑𝑑𝑛𝑛𝑎𝑎
𝑑𝑑𝑏𝑏𝑑𝑑 + 𝑑𝑑𝑛𝑛𝑎𝑎
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Fig. 1 Distribution of fire perimeters and severities (defined as percentage of basal area, BA, 
reduction) in the study area. The fire burn severity data are provided by USDA Forest Service fire 
and fuels monitoring project, collected from 1985 to 2017. The flux tower includes 12 sites all 
over the California, which were used to simulate the annual ET in the Sierra Nevada study area 
with Landsat imagery and precipitation data.  
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Fig. 2 The Sierra Nevada wide annual a) ET reduction, b) fire-impacted area, c) water-year 
precipitation and d) water-year mean temperature. The total ET reduction (aET) is calculated as 
the ET reduction in the first year post-fire using Equation 1, over all the areas burned in each 
year from 1986 to 2017.The water-year is calculated from October 1 to September 30.  
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Fig. 3 a) Evapotranspiration (ET) 
averaged over all fires across the 
Sierra Nevada at burned and 
corresponding unburned areas from 
5 years before to 15 years after fire. 
b) Absolute evapotranspiration 
reduction (aET) averaged over all 
fires for 15 years after fire. c) 
Percent of areas with ET recovery to 
levels of unburned control areas for 
15 years after fire. Values are 
grouped by fire severity across all 
635 fires that occurred during 1986-
2017. Dot size is proportional to the 
area in each statistic. 
 
  



 
 

13 

 

Fig. 4 The matrix of correlations between evapotranspiration reduction in absolute (aET) and relative 
(rET) values and eleven environmental attributes, plus the correlations among them. bNDVI is the five-
year-average pre-fire NDVI. RdNBR and dNBR are fire indices standing for Relative differenced 
Normalized Burn Ratio and delta Normalized Burn Ratio, respectively. North is the Northness. Lat. is the 
latitude. Tem. and Pre. are the normal-year mean temperature and total precipitation from Parameter-
elevation Regressions on Independent Slopes Model 800 m dataset, respectively.  
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Fig. 5 Evapotranspiration (ET) response to fires of three burn severities by pre-fire NDVI and 
precipitation: (a,d) ET in unburned control and burned areas in the first year after the fire, (b,e) absolute 
evapotranspiration reduction (aET) in the first-year post-fire, and (c,f) fraction of ET reduction relative to 
pre-fire (rET). The values presented are means of burned area at three aggregated fire-severity classes 
(low: 0-25%, moderate: 25-75%, high: 75-100% basal area reduction) over 1986-2017, in 100-mm normal 
annual precipitation bins and 0.1 unit of NDVI bins. Dot size is proportional to the fire-impacted area and 
corresponding unburned area. The error bars represent the 25%-75% value range of areas burned with 
75-100% basal area reduction (the fire-severity class with largest burned area) and controlled areas. 
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Fig. 6 Evapotranspiration (ET) response to fires of three burn severities by Elevation (DEM) and 
Temperature (T): (a,d) ET in unburned control and burned areas in the first year after the fire, (b,e) 
absolute evapotranspiration reduction (aET) in the first-year post-fire, and (c,f) fraction of ET reduction 
relative to pre-fire (rET). The values presented are means of burned area at three aggregated fire-severity 
classes (low: 0-25%, moderate: 25-75%, high:75-100% basal area reduction) over 1986-2017, in 100-m 
elevation bins and 1 ℃ temperature bins. Dot size is proportional to the fire-impacted area and 
corresponding unburned area. The error bars represent the 25%-75% value range of areas burned with 
75-100% basal area reduction (the fire-severity class with largest burned area) and controlled areas. 
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Supplementary Material 
ET estimation method 
We estimated the gridded annual evapotranspiration (ET) from 1985 to 2018 based on the correlations between 
eddy-covariance flux-tower measurements of annual evapotranspiration and satellite imagery derived NDVI 
(Equation S1). NDVI was calculated at 30-m resolution from USGS Landsat Collection Tier 1 surface 
reflectance, downloaded from Google Earth Engine (https://earthengine.google.com/). Each annual NDVI map 
was calculated as the mean of all Landsat scenes for a water year (Oct. to Sept,) after masking for shadow, snow 
or cloud (Zhu and Woodcock 2012). We homogenized Landsat 8 NDVI (L8, 2014-2018) and Landsat 7 (L7, 
2012- 2013) to Landsat 5 NDVI (L5, 1985-2011) following Su et al. (2017); Sulla-Menashe et al. (2016) 
(Equation S2, S3). 

 𝑎𝑎𝑎𝑎 = 112.3 × 𝑛𝑛(3.2×𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)                 (S1) 
𝐿𝐿5 = 0.9883 × 𝐿𝐿7 − 0.0367               (S2) 
𝐿𝐿5 = 0.8213 × 𝐿𝐿8 − 0.0403               (S3) 

This Landsat based annual ET estimation was developed by (Goulden et al. 2012; Goulden and Bales 2019), which 
used 77 site-years of ET data from 10 eddy-covariance flux towers. We extended the estimation with two added 
flux-tower sites in the study area, resulting in 97 site-years of ET observations, which spanned a wider range of 
spatial (Fig. 1) and temporal (2001-2016) variations. The 12 flux-towers located in five main vegetation types 
(Fig. S1). These 12 flux-tower sites also included 4 sites in the Southern California (Fig. 1), which contained 
representative vegetation types of our study area in the same Mediterranean climate. The ET observations also 
included some site-years that were impacted by drought, fire, forest thinning, prescribed fire, reflecting by the 
significant reduction in annual NDVI (Fig. S1). The modeled ET showed a strong correlation to site-level flux-
tower observations (coefficient of determination, R2=0.77). Most of the modeled ET fall within ±100 mm ranges 
of ET measurements, with a root mean square error (RMSE) at 108 mm, and mean absolute error (MAE) at 74 
mm (Figure S1). The main estimation error is observed at site-years with high NDVI and ET values, due to NDVI 
saturation issue. The model’s temporal and spatial sensitivities were assessed using leave-one-out cross validation 
method by removing an individual water year or flux-tower site for model building and then evaluating on the 
site-year removed.  

 
Fig. S1 Flux tower measured annual evapotranspiration (ET) at 97 site-years versus a) annual average 
Landsat-derived normalized difference vegetation index (NDVI), black dashed line is the exponential fit 
model (Equation S1); and b) modeled ET, black line is the 1:1 line, and the grey dashed lines are ±100 mm 
off the 1:1 line. Root mean square error (RMSE) and mean absolute error (MAE) are given for the model. 
The color and shape of points indicate vegetation type and impact to vegetation for each site and year. 
ENF: Evergreen Needleleaf Forest, GRA: Grasslands, MF: Mixed Forest, OSH: Open Shrublands, WSA: 
Woody Savannas. Manage includes mechanical forest thinning and prescribed fire. 
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Fig. S2 The multi-variable regression model and their simulation accuracies (quantified by R2 ) for changes 
in absolute evapotranspiration reduction using different combinations of independent variables: five-year 
pre-fire NDVI (bNDVI), fire-severity indices dNBR, RdNBR, fire size (Firesize), elevation (Elev.), slope, aspect, 
Northness (North), latitude (Lat.), temperature (Tem), and  precipitation (pre.). The black blocks indicate 
the independent variables being included in the regression model. The models are ordered from low to 
high simulation accuracies from bottom to top.  The model with two independent variables, i.e. bNDVI and 
dNBR, was selected because further including other variables can barely improve the accuracy (R2 from 
0.7 to 0.73).   
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Fig. S3 The random-forest modeled changes in absolute evapotranspiration reduction (aET) across 
ranges of values for influential variables ordered by the importance: five-year pre-fire NDVI (bNDVI), fire-
severity indices dNBR, RdNBR, elevation, precipitation, temperature, latitude, fire size, slope, Northness, 
and aspect. The importance is calculated from mean decrease accuracy “IncMSE”. 
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Fig. S4 a) The potential forest area for restoration that haven’t been burned by large wildfire in the past 
20 years, located in the elevation range of 500-2500-m, with relatively dense vegetation (NDVI>0.4) in the 
current condition (2018). b) The histogram of dNBR values of all the areas burned with 25-75% basal area 
reduction during 1986-2017. The mean (M) ± standard deviation (sd) of the dNBR values are label above 
the histogram, respectively. The current NDVI map and dNBR ranges were used to predict the possible 
ET reduction.  
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Fig. S5 The accumulated evapotranspiration (ET) 
reduction to fires of three main severity classes within 
the first 1, 5, 10, and 15 years following fire, 
respectively. The values area summarized based on 
annual mean ET reduction to fires in Fig. 3 in the 
manuscript.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table S1 A summary of possible ET reduction for three scenarios over the 1st and 15th year post-
fire. The ET reduction in 1st year post-fire with 25-75% basal area reduction (1yrMidSev) was simulated 
from Equation 4 (aET=0.41dNBR+622.84bNDVI-234.61) based on NDVI map with current forest 
condition and dNBR ranges (M±sd) from wildfires records (Fig. S4). All the other scenarios are 
calculated based on their ratios (summarized from Fig. S5)  to the 1yrMidSev. 
  Scenario 

 
Total ET reduction, bm3yr-1 

Basal area 
reduction,% 

year 
post-fire 

Ratio to 
1yrMidSev. 

M-std M M+std 
25-75 1 1.0 8.7 10.8 13.0 
0-25 1 0.9 7.4 9.3 11.1 

75-100 1 1.2 10.8 13.5 16.2 
0-25 15 0.4 3.5 4.4 5.3 
25-75 15 0.5 4.2 5.3 6.3 

75-100 15 0.6 5.2 6.5 7.8 
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Fig. S6 Boxplots of absolute ET reduction (aET), fractional ET reduction (rET), and pre-fire NDVI in each 
vegetation types, defined by National Land Cover Database. The red bar indicates the mean and standard 
deviation of values in each vegetation type. The upper, lower bounds and mid-line of the box indicate the 
25%, 75%, and medium values in each vegetation type. The table summarized the portion of burned areas 
occupied by each vegetation types, and the mean and standard deviation (St) of aET and rET for each 
vegetation types.   
 

Table S2 The transition of forest type after wildfire. Vegetation type information was obtained from the 
National Land Cover Database (NLCD 1992, 2001, 2006, 2011, and 2016). The ratio is calculated as the 
percentage of each forest to other vegetation types.  

Pre-fire Post-fire Ratio 

Deciduous forest  

Deciduous forest 66% 
Shrubland 16% 
Herbaceous 15% 
Evergreen forest 3% 

Evergreen forest  

Evergreen forest 54% 
Herbaceous 25% 
Shrubland 21% 

Mixed forest  

Mixed forest 46% 
Shrubland 29% 
Herbaceous 12% 
Evergreen forest 10% 
Deciduous forest 2% 
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Slope groups  
aET 
difference 

p value 

(16~25) - (0~6) 25.2 0.0 
(6~16)   - (0~6) 20.9 0.0 
(25~90) - (0~6) 20.1 0.0 
(16~25) - (25~90) 5.1 0.0 
(16~25) - (6~16) 4.3 0.0 
(6~16)   - (25~90) 0.8 0.6 

 

Northness groups 
aET 
diff 

p 
value 

(0.2~0.42)-(-0.02~0.2) 11.3 0.0 
(0.2~0.42)-(-0.23~-0.02) 7.1 0.0 
(0.2~0.42)-(-0.45~-0.23) 6.9 0.0 
(-0.45~-0.23)-(-0.02~0.2) 4.3 0.0 
(-0.23~-0.02)- (-0.02~0.2) 4.2 0.0 
(-0.45~-0.23)- (-0.23~-0.02) 0.2 1.0 

 
Fig. S7 Difference in aET and rET among Slope and Northness among four groups. The four groups were 
defined based on the mean (M) and standard deviation (sd) of Slope and Northness ranges, respectively, 
i.e. Minimum ~ M-sd, M-sd  ~ M, M ~ M+sd,  M+sd ~ Maxima. Northness is calculated as 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =
𝐬𝐬𝐬𝐬𝐬𝐬(𝑺𝑺𝑺𝑺𝑵𝑵𝑺𝑺𝑵𝑵) × 𝐜𝐜𝐜𝐜𝐬𝐬(𝑨𝑨𝑵𝑵𝑺𝑺𝑵𝑵𝑨𝑨𝑵𝑵). 

Slope groups 
rET 
difference 

p value 

(16~25) - (25~90) 1% 0 
(6~16)   - (25~90) 1% 0 
(0~6)     - (25~90) 1% 0 
(6~16)   - (16~25) 0% 0.46 
(0~6)     - (16~25) 0% 0.05 
(0~6)     - (6~16) 0% 0.47 

Northness groups 
rET 
diff 

p value 

(-0.02~0.2)-(-0.45~-0.23) 3% 0.0 
(-0.02~0.2)-(-0.23~-0.02) 2% 0.0 
(-0.02~0.2)-(0.2~0.42) 1% 0.0 
(0.2~0.42)-(-0.45~-0.23) 1% 0.0 
(-0.23~-0.02)-(-0.45~-0.23) 1% 0 
(0.2~0.42)-(-0.23~-0.02) 0% 0.1 
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Fig. S8 Time series of total absolute ET reduction (aET, a) and burned area (b) from water year 1986 to 2017. 
Both variables show increase trend with 0.003 bm3/year for aET (p value = 0.0344), and 13.5 km2/year for 
burned area (p value = 0.0189). Area burned at six fire severity classes is plotted against water year from 
1986 to 2017 (c), the class with highest fire severity (90-100% basal area reduction) shows the rapist 
increase rate over the period (17.6 km2/year, p value = 0.0005).  
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